How Should We Meta-Learn Reinforcement Learning Algorithms?
- URL: http://arxiv.org/abs/2507.17668v1
- Date: Wed, 23 Jul 2025 16:31:38 GMT
- Title: How Should We Meta-Learn Reinforcement Learning Algorithms?
- Authors: Alexander David Goldie, Zilin Wang, Jakob Nicolaus Foerster, Shimon Whiteson,
- Abstract summary: We carry out an empirical comparison of the different approaches when applied to a range of meta-learned algorithms.<n>In addition to meta-train and meta-test performance, we also investigate factors including the interpretability, sample cost and train time.<n>We propose several guidelines for meta-learning new RL algorithms which will help ensure that future learned algorithms are as performant as possible.
- Score: 74.37180723338591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The process of meta-learning algorithms from data, instead of relying on manual design, is growing in popularity as a paradigm for improving the performance of machine learning systems. Meta-learning shows particular promise for reinforcement learning (RL), where algorithms are often adapted from supervised or unsupervised learning despite their suboptimality for RL. However, until now there has been a severe lack of comparison between different meta-learning algorithms, such as using evolution to optimise over black-box functions or LLMs to propose code. In this paper, we carry out this empirical comparison of the different approaches when applied to a range of meta-learned algorithms which target different parts of the RL pipeline. In addition to meta-train and meta-test performance, we also investigate factors including the interpretability, sample cost and train time for each meta-learning algorithm. Based on these findings, we propose several guidelines for meta-learning new RL algorithms which will help ensure that future learned algorithms are as performant as possible.
Related papers
- Fast Adaptation with Kernel and Gradient based Meta Leaning [4.763682200721131]
We propose two algorithms to improve both the inner and outer loops of Model A Meta Learning (MAML)
Our first algorithm redefines the optimization problem in the function space to update the model using closed-form solutions.
In the outer loop, the second algorithm adjusts the learning of the meta-learner by assigning weights to the losses from each task of the inner loop.
arXiv Detail & Related papers (2024-11-01T07:05:03Z) - General-Purpose In-Context Learning by Meta-Learning Transformers [45.63069059498147]
We show that Transformers and other black-box models can be meta-trained to act as general-purpose in-context learners.
We characterize transitions between algorithms that generalize, algorithms that memorize, and algorithms that fail to meta-train at all.
We propose practical interventions such as biasing the training distribution that improve the meta-training and meta-generalization of general-purpose in-context learning algorithms.
arXiv Detail & Related papers (2022-12-08T18:30:22Z) - Discovered Policy Optimisation [17.458523575470384]
We explore the Mirror Learning space by meta-learning a "drift" function.
We refer to the immediate result as Learnt Policy optimisation (LPO)
By analysing LPO we gain original insights into policy optimisation which we use to formulate a novel, closed-form RL algorithm, Discovered Policy optimisation (DPO)
arXiv Detail & Related papers (2022-10-11T17:32:11Z) - Multi-Task Meta-Learning Modification with Stochastic Approximation [0.7734726150561089]
A few-shot learning problem is one of the main benchmarks of meta-learning algorithms.
In this paper we investigate the modification of standard meta-learning pipeline that takes a multi-task approach during training.
The proposed method simultaneously utilizes information from several meta-training tasks in a common loss function.
Proper optimization of these weights can have a big influence on training of the entire model and might improve the quality on test time tasks.
arXiv Detail & Related papers (2021-10-25T18:11:49Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
Reinforcement learning algorithms update an agent's parameters according to one of several possible rules.
This paper introduces a new meta-learning approach that discovers an entire update rule.
It includes both 'what to predict' (e.g. value functions) and 'how to learn from it' by interacting with a set of environments.
arXiv Detail & Related papers (2020-07-17T07:38:39Z) - Rethinking Few-Shot Image Classification: a Good Embedding Is All You
Need? [72.00712736992618]
We show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, outperforms state-of-the-art few-shot learning methods.
An additional boost can be achieved through the use of self-distillation.
We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms.
arXiv Detail & Related papers (2020-03-25T17:58:42Z) - Unraveling Meta-Learning: Understanding Feature Representations for
Few-Shot Tasks [55.66438591090072]
We develop a better understanding of the underlying mechanics of meta-learning and the difference between models trained using meta-learning and models trained classically.
We develop a regularizer which boosts the performance of standard training routines for few-shot classification.
arXiv Detail & Related papers (2020-02-17T03:18:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.