SIEVE: Effective Filtered Vector Search with Collection of Indexes
- URL: http://arxiv.org/abs/2507.11907v2
- Date: Sun, 20 Jul 2025 04:50:39 GMT
- Title: SIEVE: Effective Filtered Vector Search with Collection of Indexes
- Authors: Zhaoheng Li, Silu Huang, Wei Ding, Yongjoo Park, Jianjun Chen,
- Abstract summary: Real-world tasks such as recommending videos with the kids tag can be reduced to finding most similar vectors associated with hard predicates.<n>Prior state-of-the-art graph-based similarity search techniques quickly degenerate when hard constraints are considered.<n>We show superior performance and support on datasets with varying selectivities and forms.
- Score: 11.81573028534193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world tasks such as recommending videos with the kids tag can be reduced to finding most similar vectors associated with hard predicates. This task, filtered vector search, is challenging as prior state-of-the-art graph-based (unfiltered) similarity search techniques quickly degenerate when hard constraints are considered. That is, effective graph-based filtered similarity search relies on sufficient connectivity for reaching the most similar items within just a few hops. To consider predicates, recent works propose modifying graph traversal to visit only the items that may satisfy predicates. However, they fail to offer the just-a-few-hops property for a wide range of predicates: they must restrict predicates significantly or lose efficiency if only a small fraction of items satisfy predicates. We propose an opposite approach: instead of constraining traversal, we build many indexes each serving different predicate forms. For effective construction, we devise a three-dimensional analytical model capturing relationships among index size, search time, and recall, with which we follow a workload-aware approach to pack as many useful indexes as possible into a collection. At query time, the analytical model is employed yet again to discern the one that offers the fastest search at a given recall. We show superior performance and support on datasets with varying selectivities and forms: our approach achieves up to 8.06x speedup while having as low as 1% build time versus other indexes, with less than 2.15x memory of a standard HNSW graph and modest knowledge of past workloads.
Related papers
- FastGAS: Fast Graph-based Annotation Selection for In-Context Learning [53.17606395275021]
In-context learning (ICL) empowers large language models (LLMs) to tackle new tasks by using a series of training instances as prompts.
Existing methods have proposed to select a subset of unlabeled examples for annotation.
We propose a graph-based selection method, FastGAS, designed to efficiently identify high-quality instances.
arXiv Detail & Related papers (2024-06-06T04:05:54Z) - Improved Anonymous Multi-Agent Path Finding Algorithm [3.694001372535405]
We consider an Anonymous Multi-Agent Path-Finding (AMAPF) problem where the set of agents is confined to a graph.
We suggest a specific search algorithm that leverages the idea of exploring the search space not through considering separate search states but rather bulks of them simultaneously.
The resultant AMAPF solver demonstrates superior performance compared to the state-of-the-art competitor and is able to solve all publicly available MAPF instances in less than 30 seconds.
arXiv Detail & Related papers (2023-12-17T00:49:30Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQ is a new formulation for scene graph generation that avoids the multi-task learning problem and the entity pair distribution.
We employ a DETR-based encoder-decoder conditional queries to significantly reduce the entity label space as well.
Experimental results show that TraCQ not only outperforms existing single-stage scene graph generation methods, it also beats many state-of-the-art two-stage methods on the Visual Genome dataset.
arXiv Detail & Related papers (2023-06-09T06:02:01Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Integrating connection search in graph queries [6.948362325254044]
We show how to integrate connecting tree patterns (CTPs) within a graph query language such as SPARQL or Cypher.
To cope with very large search spaces, we propose an efficient pruning technique and formally establish a large set of cases where our algorithm, MOLESP, is complete even with pruning.
arXiv Detail & Related papers (2022-08-09T14:27:57Z) - Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search [33.9052190473029]
Subgraph Matching is a core operation in graph database search, biomedical analysis, social group finding, etc.
In this paper, we propose a novel encoder-decoder neural network architecture to dynamically compute the matching information between the query and the target graphs.
Experiments on five large real-world target graphs show that N-BLS can significantly improve the subgraph matching performance.
arXiv Detail & Related papers (2022-07-21T04:47:21Z) - FINGER: Fast Inference for Graph-based Approximate Nearest Neighbor
Search [20.928821121591493]
We propose FINGER, a fast inference method to achieve efficient graph search.
FINGER approximates the distance function by estimating angles between neighboring residual vectors with low-rank bases and distribution matching.
Empirically, accelerating a popular graph-based method named HNSW by FINGER is shown to outperform existing graph-based methods by 20%-60% across different benchmark datasets.
arXiv Detail & Related papers (2022-06-22T22:30:46Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Learning Query Expansion over the Nearest Neighbor Graph [94.80212602202518]
Graph Query Expansion (GQE) is presented, which is learned in a supervised manner and performs aggregation over an extended neighborhood of the query.
The technique achieves state-of-the-art results over known benchmarks.
arXiv Detail & Related papers (2021-12-05T19:48:42Z) - Best-First Beam Search [78.71330480725668]
We show that the standard implementation of beam search can be made up to 10x faster in practice.
We propose a memory-reduced variant of Best-First Beam Search, which has a similar beneficial search bias in terms of downstream performance.
arXiv Detail & Related papers (2020-07-08T05:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.