SEPose: A Synthetic Event-based Human Pose Estimation Dataset for Pedestrian Monitoring
- URL: http://arxiv.org/abs/2507.11910v1
- Date: Wed, 16 Jul 2025 04:54:11 GMT
- Title: SEPose: A Synthetic Event-based Human Pose Estimation Dataset for Pedestrian Monitoring
- Authors: Kaustav Chanda, Aayush Atul Verma, Arpitsinh Vaghela, Yezhou Yang, Bharatesh Chakravarthi,
- Abstract summary: SEPose is a synthetic multi-person pose estimation dataset for fixed pedestrian perception generated using dynamic vision sensors in the CARLA simulator.<n>We train existing state-of-the-art models such as RVT and YOLOv8 on our dataset and evaluate them on real event-based data to demonstrate the sim-to-real generalization capabilities of the proposed dataset.
- Score: 20.537672896807063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event-based sensors have emerged as a promising solution for addressing challenging conditions in pedestrian and traffic monitoring systems. Their low-latency and high dynamic range allow for improved response time in safety-critical situations caused by distracted walking or other unusual movements. However, the availability of data covering such scenarios remains limited. To address this gap, we present SEPose -- a comprehensive synthetic event-based human pose estimation dataset for fixed pedestrian perception generated using dynamic vision sensors in the CARLA simulator. With nearly 350K annotated pedestrians with body pose keypoints from the perspective of fixed traffic cameras, SEPose is a comprehensive synthetic multi-person pose estimation dataset that spans busy and light crowds and traffic across diverse lighting and weather conditions in 4-way intersections in urban, suburban, and rural environments. We train existing state-of-the-art models such as RVT and YOLOv8 on our dataset and evaluate them on real event-based data to demonstrate the sim-to-real generalization capabilities of the proposed dataset.
Related papers
- How Real is CARLAs Dynamic Vision Sensor? A Study on the Sim-to-Real Gap in Traffic Object Detection [0.0]
Event cameras are well-suited for real-time object detection at traffic intersections.<n>The development of robust event-based detection models is hindered by the limited availability of annotated real-world datasets.<n>This study offers the first quantifiable analysis of the sim-to-real gap in event-based object detection using CARLAs DVS.
arXiv Detail & Related papers (2025-06-16T17:27:43Z) - Highly Accurate and Diverse Traffic Data: The DeepScenario Open 3D Dataset [25.244956737443527]
We introduce the DeepScenario Open 3D dataset (DSC3D) of 6 degrees of freedom bounding box trajectories acquired through a novel monocular camera drone tracking pipeline.<n>Our dataset includes more than 175,000 trajectories of 14 types of traffic participants and significantly exceeds existing datasets in terms of diversity and scale.<n>We demonstrate its utility across multiple applications including motion prediction, motion planning, scenario mining, and generative reactive traffic agents.
arXiv Detail & Related papers (2025-04-24T08:43:48Z) - DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
We propose DrivingSphere, a realistic and closed-loop simulation framework.
Its core idea is to build 4D world representation and generate real-life and controllable driving scenarios.
By providing a dynamic and realistic simulation environment, DrivingSphere enables comprehensive testing and validation of autonomous driving algorithms.
arXiv Detail & Related papers (2024-11-18T03:00:33Z) - SCOPE: A Synthetic Multi-Modal Dataset for Collective Perception Including Physical-Correct Weather Conditions [0.5026434955540995]
SCOPE is the first synthetic multi-modal dataset that incorporates realistic camera and LiDAR models as well as parameterized and physically accurate weather simulations.
The dataset contains 17,600 frames from over 40 diverse scenarios with up to 24 collaborative agents, infrastructure sensors, and passive traffic, including cyclists and pedestrians.
arXiv Detail & Related papers (2024-08-06T09:35:50Z) - SEVD: Synthetic Event-based Vision Dataset for Ego and Fixed Traffic Perception [22.114089372056238]
We present SEVD, a first-of-its-kind multi-view ego, and fixed perception synthetic event-based dataset.
SEVD spans urban, suburban, rural, and highway scenes featuring various classes of objects.
We evaluate the dataset using state-of-the-art event-based (RED, RVT) and frame-based (YOLOv8) methods for traffic participant detection tasks.
arXiv Detail & Related papers (2024-04-12T20:40:12Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - LiveHPS: LiDAR-based Scene-level Human Pose and Shape Estimation in Free
Environment [59.320414108383055]
We present LiveHPS, a novel single-LiDAR-based approach for scene-level human pose and shape estimation.
We propose a huge human motion dataset, named FreeMotion, which is collected in various scenarios with diverse human poses.
arXiv Detail & Related papers (2024-02-27T03:08:44Z) - SKoPe3D: A Synthetic Dataset for Vehicle Keypoint Perception in 3D from
Traffic Monitoring Cameras [26.457695296042903]
We propose SKoPe3D, a unique synthetic vehicle keypoint dataset from a roadside perspective.
SKoPe3D contains over 150k vehicle instances and 4.9 million keypoints.
Our experiments highlight the dataset's applicability and the potential for knowledge transfer between synthetic and real-world data.
arXiv Detail & Related papers (2023-09-04T02:57:30Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
In autonomous racing, the weather can change abruptly, causing significant degradation in perception, resulting in ineffective manoeuvres.
In order to improve detection in adverse weather, deep-learning-based models typically require extensive datasets captured in such conditions.
We introduce an approach of using synthesised adverse condition datasets in autonomous racing (generated using CycleGAN) to improve the performance of four out of five state-of-the-art detectors.
arXiv Detail & Related papers (2022-01-10T10:02:40Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
We show how to search for feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras.
A practical 3-stage transferable active grasping pipeline is developed, that is adaptive to unseen clutter scenes.
In our pipeline, we propose a novel mask-guided reward to overcome the sparse reward issue in grasping and ensure category-irrelevant behavior.
arXiv Detail & Related papers (2020-04-28T08:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.