Transferable Active Grasping and Real Embodied Dataset
- URL: http://arxiv.org/abs/2004.13358v1
- Date: Tue, 28 Apr 2020 08:15:35 GMT
- Title: Transferable Active Grasping and Real Embodied Dataset
- Authors: Xiangyu Chen, Zelin Ye, Jiankai Sun, Yuda Fan, Fang Hu, Chenxi Wang,
Cewu Lu
- Abstract summary: We show how to search for feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras.
A practical 3-stage transferable active grasping pipeline is developed, that is adaptive to unseen clutter scenes.
In our pipeline, we propose a novel mask-guided reward to overcome the sparse reward issue in grasping and ensure category-irrelevant behavior.
- Score: 48.887567134129306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grasping in cluttered scenes is challenging for robot vision systems, as
detection accuracy can be hindered by partial occlusion of objects. We adopt a
reinforcement learning (RL) framework and 3D vision architectures to search for
feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras. To
overcome the disadvantages of photo-realistic environment simulation, we
propose a large-scale dataset called Real Embodied Dataset (RED), which
includes full-viewpoint real samples on the upper hemisphere with amodal
annotation and enables a simulator that has real visual feedback. Based on this
dataset, a practical 3-stage transferable active grasping pipeline is
developed, that is adaptive to unseen clutter scenes. In our pipeline, we
propose a novel mask-guided reward to overcome the sparse reward issue in
grasping and ensure category-irrelevant behavior. The grasping pipeline and its
possible variants are evaluated with extensive experiments both in simulation
and on a real-world UR-5 robotic arm.
Related papers
- ClearDepth: Enhanced Stereo Perception of Transparent Objects for Robotic Manipulation [18.140839442955485]
We develop a vision transformer-based algorithm for stereo depth recovery of transparent objects.
Our method incorporates a parameter-aligned, domain-adaptive, and physically realistic Sim2Real simulation for efficient data generation.
Our experimental results demonstrate the model's exceptional Sim2Real generalizability in real-world scenarios.
arXiv Detail & Related papers (2024-09-13T15:44:38Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks [47.07188762367792]
We present ARSim, a framework designed to enhance real multi-view image data with 3D synthetic objects of interest.
We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it.
The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles.
arXiv Detail & Related papers (2024-03-22T17:49:11Z) - Closing the Visual Sim-to-Real Gap with Object-Composable NeRFs [59.12526668734703]
We introduce Composable Object Volume NeRF (COV-NeRF), an object-composable NeRF model that is the centerpiece of a real-to-sim pipeline.
COV-NeRF extracts objects from real images and composes them into new scenes, generating photorealistic renderings and many types of 2D and 3D supervision.
arXiv Detail & Related papers (2024-03-07T00:00:02Z) - Reconstructing Objects in-the-wild for Realistic Sensor Simulation [41.55571880832957]
We present NeuSim, a novel approach that estimates accurate geometry and realistic appearance from sparse in-the-wild data.
We model the object appearance with a robust physics-inspired reflectance representation effective for in-the-wild data.
Our experiments show that NeuSim has strong view synthesis performance on challenging scenarios with sparse training views.
arXiv Detail & Related papers (2023-11-09T18:58:22Z) - Aerial Monocular 3D Object Detection [46.26215100532241]
This work proposes a dual-view detection system named DVDET to achieve aerial monocular object detection in both the 2D image space and the 3D physical space.
To address the dataset challenge, we propose a new large-scale simulation dataset named AM3D-Sim, generated by the co-simulation of AirSIM and CARLA, and a new real-world aerial dataset named AM3D-Real, collected by DJI Matrice 300 RTK.
arXiv Detail & Related papers (2022-08-08T08:32:56Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Recovering and Simulating Pedestrians in the Wild [81.38135735146015]
We propose to recover the shape and motion of pedestrians from sensor readings captured in the wild by a self-driving car driving around.
We incorporate the reconstructed pedestrian assets bank in a realistic 3D simulation system.
We show that the simulated LiDAR data can be used to significantly reduce the amount of real-world data required for visual perception tasks.
arXiv Detail & Related papers (2020-11-16T17:16:32Z) - SimAug: Learning Robust Representations from Simulation for Trajectory
Prediction [78.91518036949918]
We propose a novel approach to learn robust representation through augmenting the simulation training data.
We show that SimAug achieves promising results on three real-world benchmarks using zero real training data.
arXiv Detail & Related papers (2020-04-04T21:22:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.