Native-AI Empowered Scalable Architectures and Solutions for Future Non-Terrestrial Networks: An Overview
- URL: http://arxiv.org/abs/2507.11935v1
- Date: Wed, 16 Jul 2025 05:58:45 GMT
- Title: Native-AI Empowered Scalable Architectures and Solutions for Future Non-Terrestrial Networks: An Overview
- Authors: Jikang Deng, Fizza Hassan, Hui Zhou, Saad Al-Ahmadi, Mohamed-Slim Alouini, Daniel B. Da Costa,
- Abstract summary: The non-terrestrial network (NTN) and open radio access network (ORAN) have received increasing interest from both academia and industry.<n>The high altitude and mobility of present new challenges in the development and operations (DevOps) lifecycle.<n>We propose the ORAN-based framework, discussing its features and architectures in detail.
- Score: 43.83346235227403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the path toward 6G networks is being charted, the emerging applications have motivated evolutions of network architectures to realize the efficient, reliable, and flexible wireless networks. Among the potential architectures, the non-terrestrial network (NTN) and open radio access network (ORAN) have received increasing interest from both academia and industry. Although the deployment of NTNs ensures coverage, enhances spectral efficiency, and improves the resilience of wireless networks. The high altitude and mobility of NTN present new challenges in the development and operations (DevOps) lifecycle, hindering intelligent and scalable network management due to the lack of native artificial intelligence (AI) capability. With the advantages of ORAN in disaggregation, openness, virtualization, and intelligence, several works propose integrating ORAN principles into the NTN, focusing mainly on ORAN deployment options based on transparent and regenerative systems. However, a holistic view of how to effectively combine ORAN and NTN throughout the DevOps lifecycle is still missing, especially regarding how intelligent ORAN addresses the scalability challenges in NTN. Motivated by this, in this paper, we first provide the background knowledge about ORAN and NTN, outline the state-of-the-art research on ORAN for NTNs, and present the DevOps challenges that motivate the adoption of ORAN solutions. We then propose the ORAN-based NTN framework, discussing its features and architectures in detail. These include the discussion about flexible fronthaul split, RAN intelligent controllers (RICs) enhancement for distributed learning, scalable deployment architecture, and multi-domain service management. Finally, the future research directions, including combinations of the ORAN-based NTN framework and other enabling technologies and schemes, as well as the candidate use cases, are highlighted.
Related papers
- Large-Scale AI in Telecom: Charting the Roadmap for Innovation, Scalability, and Enhanced Digital Experiences [212.5544743797899]
Large Telecom Models (LTMs) are tailored AI models designed to address the complex challenges faced by modern telecom networks.<n>The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization.
arXiv Detail & Related papers (2025-03-06T07:53:24Z) - Distributed satellite information networks: Architecture, enabling technologies, and trends [56.747473208256174]
The distributed satellite information networks (DSIN) have emerged as an innovative architecture, bridging information gaps across diverse satellite systems.<n>This survey first provides a profound discussion about innovative network architectures of DSIN.<n>The DSIN faces challenges from network heterogeneity, unpredictable channel dynamics, sparse resources, and decentralized collaboration frameworks.
arXiv Detail & Related papers (2024-12-17T06:44:05Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.<n>This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Implementing and Evaluating Security in O-RAN: Interfaces, Intelligence, and Platforms [18.106587432715155]
The Open Radio Access Network (RAN) builds on top of cloud-based, multi-vendor, open and intelligent architectures to shape the next generation of cellular networks for 5G and beyond.
This article is the first work in approaching the security aspect of O-RAN holistically and with experimental evidence obtained on a state-of-the-art programmable O-RAN platform.
arXiv Detail & Related papers (2023-04-21T17:02:35Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services [10.718353079920007]
This paper presents a novel architecture that leverages Deep Reinforcement Learning at the edge of the network in order to address Radio Access Network Slicing and Radio Resource Management.
The effectiveness of our proposal against baseline methodologies is investigated through computer simulation, by considering an autonomous-driving use-case.
arXiv Detail & Related papers (2021-03-18T14:18:34Z) - Towards Intelligent RAN Slicing for B5G: Opportunities and Challenges [30.145634771445735]
5G networks and beyond (B5G) embrace the concept of network slicing by forging virtual instances (slices) of its physical infrastructure.
This article emphasizes RAN slicing (RAN-S) design. Forming on-demand RAN-S that can be flexibly (re)-configured while ensuring slice isolation is challenging.
arXiv Detail & Related papers (2021-02-27T14:24:09Z) - Neuroevolutionary Transfer Learning of Deep Recurrent Neural Networks
through Network-Aware Adaptation [57.46377517266827]
This work introduces network-aware adaptive structure transfer learning (N-ASTL)
N-ASTL utilizes statistical information related to the source network's topology and weight distribution to inform how new input and output neurons are to be integrated into the existing structure.
Results show improvements over prior state-of-the-art, including the ability to transfer in challenging real-world datasets not previously possible.
arXiv Detail & Related papers (2020-06-04T06:07:30Z) - Intelligent O-RAN for Beyond 5G and 6G Wireless Networks [27.479161974811284]
Building on the principles of openness and intelligence, there has been a concerted global effort from the operators towards enhancing the radio access network (RAN) architecture.
The objective is to build an operator-defined RAN architecture on open hardware that provides intelligent radio control for beyond fifth generation (5G) as well as future sixth generation (6G) wireless networks.
This article provides an introduction to the concepts, principles, and requirements of the Open RAN as specified by the O-RAN alliance.
arXiv Detail & Related papers (2020-05-17T21:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.