MOSPA: Human Motion Generation Driven by Spatial Audio
- URL: http://arxiv.org/abs/2507.11949v1
- Date: Wed, 16 Jul 2025 06:33:11 GMT
- Title: MOSPA: Human Motion Generation Driven by Spatial Audio
- Authors: Shuyang Xu, Zhiyang Dou, Mingyi Shi, Liang Pan, Leo Ho, Jingbo Wang, Yuan Liu, Cheng Lin, Yuexin Ma, Wenping Wang, Taku Komura,
- Abstract summary: We introduce the first comprehensive Spatial Audio-Driven Human Motion dataset, which contains diverse and high-quality spatial audio and motion data.<n>We develop a simple yet effective diffusion-based generative framework for human MOtion generation driven by SPatial Audio, termed MOSPA.<n>Once trained, MOSPA could generate diverse realistic human motions conditioned on varying spatial audio inputs.
- Score: 56.735282455483954
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Enabling virtual humans to dynamically and realistically respond to diverse auditory stimuli remains a key challenge in character animation, demanding the integration of perceptual modeling and motion synthesis. Despite its significance, this task remains largely unexplored. Most previous works have primarily focused on mapping modalities like speech, audio, and music to generate human motion. As of yet, these models typically overlook the impact of spatial features encoded in spatial audio signals on human motion. To bridge this gap and enable high-quality modeling of human movements in response to spatial audio, we introduce the first comprehensive Spatial Audio-Driven Human Motion (SAM) dataset, which contains diverse and high-quality spatial audio and motion data. For benchmarking, we develop a simple yet effective diffusion-based generative framework for human MOtion generation driven by SPatial Audio, termed MOSPA, which faithfully captures the relationship between body motion and spatial audio through an effective fusion mechanism. Once trained, MOSPA could generate diverse realistic human motions conditioned on varying spatial audio inputs. We perform a thorough investigation of the proposed dataset and conduct extensive experiments for benchmarking, where our method achieves state-of-the-art performance on this task. Our model and dataset will be open-sourced upon acceptance. Please refer to our supplementary video for more details.
Related papers
- Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset [113.25650486482762]
We introduce the Seamless Interaction dataset, a large-scale collection of over 4,000 hours of face-to-face interaction footage.<n>This dataset enables the development of AI technologies that understand dyadic embodied dynamics.<n>We develop a suite of models that utilize the dataset to generate dyadic motion gestures and facial expressions aligned with human speech.
arXiv Detail & Related papers (2025-06-27T18:09:49Z) - Both Ears Wide Open: Towards Language-Driven Spatial Audio Generation [32.24603883810094]
Controlling stereo audio with spatial contexts remains challenging due to high data costs and unstable generative models.<n>We first construct a large-scale, simulation-based, and GPT-assisted dataset, BEWO-1M, with abundant soundscapes and descriptions.<n>By leveraging spatial guidance, our model achieves the objective of generating immersive and controllable spatial audio from text.
arXiv Detail & Related papers (2024-10-14T16:18:29Z) - Loopy: Taming Audio-Driven Portrait Avatar with Long-Term Motion Dependency [15.841490425454344]
We propose an end-to-end audio-only conditioned video diffusion model named Loopy.<n>Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information.
arXiv Detail & Related papers (2024-09-04T11:55:14Z) - CyberHost: Taming Audio-driven Avatar Diffusion Model with Region Codebook Attention [15.841490425454344]
CyberHost is an end-to-end audio-driven human animation framework.<n>Region Codebook Attention mechanism improves the generation quality of facial and hand animations.<n>Human-prior-guided training strategies, including body movement map, hand clarity score, pose-aligned reference feature, and local enhancement supervision, improve synthesis results.
arXiv Detail & Related papers (2024-09-03T13:19:31Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations [107.88375243135579]
Given speech audio, we output multiple possibilities of gestural motion for an individual, including face, body, and hands.
We visualize the generated motion using highly photorealistic avatars that can express crucial nuances in gestures.
Experiments show our model generates appropriate and diverse gestures, outperforming both diffusion- and VQ-only methods.
arXiv Detail & Related papers (2024-01-03T18:55:16Z) - FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models [85.16273912625022]
We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from audio signal.
To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of human heads.
arXiv Detail & Related papers (2023-12-13T19:01:07Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.