論文の概要: Graph Representations for Reading Comprehension Analysis using Large Language Model and Eye-Tracking Biomarker
- arxiv url: http://arxiv.org/abs/2507.11972v1
- Date: Wed, 16 Jul 2025 07:15:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.269567
- Title: Graph Representations for Reading Comprehension Analysis using Large Language Model and Eye-Tracking Biomarker
- Title(参考訳): 大規模言語モデルと目追跡バイオマーカーを用いた読解理解のためのグラフ表現
- Authors: Yuhong Zhang, Jialu Li, Shilai Yang, Yuchen Xu, Gert Cauwenberghs, Tzyy-Ping Jung,
- Abstract要約: 理解を読むことは人間の認知発達の基本的なスキルである。
人間とLarge Language Models(LLM)がさまざまな文脈で言語をどのように理解しているかを比較する必要性が高まっている。
- 参考スコア(独自算出の注目度): 9.284765805642326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reading comprehension is a fundamental skill in human cognitive development. With the advancement of Large Language Models (LLMs), there is a growing need to compare how humans and LLMs understand language across different contexts and apply this understanding to functional tasks such as inference, emotion interpretation, and information retrieval. Our previous work used LLMs and human biomarkers to study the reading comprehension process. The results showed that the biomarkers corresponding to words with high and low relevance to the inference target, as labeled by the LLMs, exhibited distinct patterns, particularly when validated using eye-tracking data. However, focusing solely on individual words limited the depth of understanding, which made the conclusions somewhat simplistic despite their potential significance. This study used an LLM-based AI agent to group words from a reading passage into nodes and edges, forming a graph-based text representation based on semantic meaning and question-oriented prompts. We then compare the distribution of eye fixations on important nodes and edges. Our findings indicate that LLMs exhibit high consistency in language understanding at the level of graph topological structure. These results build on our previous findings and offer insights into effective human-AI co-learning strategies.
- Abstract(参考訳): 理解を読むことは人間の認知発達の基本的なスキルである。
LLM(Large Language Models)の進歩に伴い、人間とLLMがさまざまな文脈で言語をどのように理解しているかを比較し、推論、感情解釈、情報検索といった機能的なタスクにこの理解を適用する必要性が高まっている。
前回の研究では, LLMとヒトバイオマーカーを用いて読解過程を研究した。
その結果, LLMでは, 推測対象語と高い関係の低い単語に対応するバイオマーカーが, 特に視線追跡データを用いた場合, 異なるパターンを示した。
しかし、個々の単語にのみ焦点をあてることによって理解の深みが制限され、その潜在的な意味にもかかわらず、結論はやや単純になった。
本研究では,LLMをベースとしたAIエージェントを用いて,読み出し経路からノードやエッジに単語をグループ化し,意味的意味と質問指向のプロンプトに基づくグラフベースのテキスト表現を生成する。
次に、重要なノードとエッジのアイフィクスの分布を比較した。
以上の結果から,LLMは言語理解において,グラフトポロジ的構造のレベルで高い一貫性を示すことが示唆された。
これらの結果は過去の知見に基づいて構築され、人間とAIの効果的なコラーニング戦略に関する洞察を提供する。
関連論文リスト
- Semantic Mastery: Enhancing LLMs with Advanced Natural Language Understanding [0.0]
本稿では,より高度なNLU技術を用いて,大規模言語モデル(LLM)を進化させる最先端の方法論について論じる。
我々は、構造化知識グラフ、検索強化生成(RAG)、および人間レベルの理解とモデルにマッチする微調整戦略の利用を分析する。
論文 参考訳(メタデータ) (2025-04-01T04:12:04Z) - Unveiling Visual Perception in Language Models: An Attention Head Analysis Approach [33.20992355312175]
MLLM(Multimodal Large Language Models)の最近の進歩は、視覚的理解の著しい進歩を示している。
本稿では,4つのモデルファミリーと4つのモデルスケールにまたがる系統的な調査により,この問題に対処することを目的とする。
分析の結果,これらの注意ヘッドの挙動,注意重みの分布,および入力中の視覚的トークンへの集中との間には強い相関関係が認められた。
論文 参考訳(メタデータ) (2024-12-24T02:31:24Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Traffic Light or Light Traffic? Investigating Phrasal Semantics in Large Language Models [41.233879429714925]
本研究は,フレーズ意味論を理解するためのAPIベースの大規模言語モデルの能力について批判的に考察する。
自然言語命令で指示されたフレーズ意味推論タスクの実行におけるLLMの性能を評価する。
句意味論の理解において, LLM が直面する制約を解釈するために, 詳細な誤り解析を行う。
論文 参考訳(メタデータ) (2024-10-03T08:44:17Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - Identifying Semantic Induction Heads to Understand In-Context Learning [103.00463655766066]
自然言語に存在するトークン間の2種類の関係を,注目ヘッドが符号化するかどうかを検討する。
特定の注意ヘッドは、ヘッドトークンに出席する際、テールトークンをリコールし、テールトークンの出力ロジットを増加させるパターンを示す。
論文 参考訳(メタデータ) (2024-02-20T14:43:39Z) - CoVLM: Composing Visual Entities and Relationships in Large Language
Models Via Communicative Decoding [66.52659447360104]
CoVLM は LLM を誘導して、テキスト間の視覚的実体と関係を明示的に構成することができる。
テキスト間の視覚的実体と関係を明示的に構成するために,LLM をガイドする CoVLM を提案する。
論文 参考訳(メタデータ) (2023-11-06T18:59:44Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
現代のニューラル言語モデル(LM)は、人間の文の生成と理解をモデル化するための強力なツールである。
しかし、これらの結果を得るためには、LMは明らかに非人間的な方法で訓練されなければならない。
より自然主義的に訓練されたモデルは、より人間らしい言語学習を示すのか?
本稿では,言語習得における重要なサブタスクである単語学習の文脈において,この問題を考察する。
論文 参考訳(メタデータ) (2023-10-20T03:33:36Z) - Integrating LLM, EEG, and Eye-Tracking Biomarker Analysis for Word-Level
Neural State Classification in Semantic Inference Reading Comprehension [4.390968520425543]
本研究は、意味的関係読解作業中の個人の神経状態に関する洞察を提供することを目的とする。
本研究では,LLM,視線,脳波(EEG)データを共同で分析し,読解中にキーワードに関連性のある単語をどのように処理するかについて検討する。
論文 参考訳(メタデータ) (2023-09-27T15:12:08Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
そこで本研究では, ERICA という新たなコントラスト学習フレームワークを提案し, エンティティとその関係をテキストでより深く理解する。
実験の結果,提案する erica フレームワークは文書レベルの言語理解タスクにおいて一貫した改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。