論文の概要: Block-based Symmetric Pruning and Fusion for Efficient Vision Transformers
- arxiv url: http://arxiv.org/abs/2507.12125v1
- Date: Wed, 16 Jul 2025 10:48:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.36122
- Title: Block-based Symmetric Pruning and Fusion for Efficient Vision Transformers
- Title(参考訳): 効率的な視覚変換器のためのブロックベースシンメトリプルーニングと融合
- Authors: Yi-Kuan Hsieh, Jun-Wei Hsieh, Xin Li, Yu-Ming Chang, Yu-Chee Tseng,
- Abstract要約: Vision Transformer (ViT) は様々な視覚タスクで印象的な結果を得た。
近年の方法は、重要でないトークンをプルーニングすることで、ViTの$O(n2)$複雑さを減らすことを目的としている。
効率的なViTのための新しいbfブロックベースのシンメトリプルーニングとフュージョンを提案する。
- 参考スコア(独自算出の注目度): 11.916258576313776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Transformer (ViT) has achieved impressive results across various vision tasks, yet its high computational cost limits practical applications. Recent methods have aimed to reduce ViT's $O(n^2)$ complexity by pruning unimportant tokens. However, these techniques often sacrifice accuracy by independently pruning query (Q) and key (K) tokens, leading to performance degradation due to overlooked token interactions. To address this limitation, we introduce a novel {\bf Block-based Symmetric Pruning and Fusion} for efficient ViT (BSPF-ViT) that optimizes the pruning of Q/K tokens jointly. Unlike previous methods that consider only a single direction, our approach evaluates each token and its neighbors to decide which tokens to retain by taking token interaction into account. The retained tokens are compressed through a similarity fusion step, preserving key information while reducing computational costs. The shared weights of Q/K tokens create a symmetric attention matrix, allowing pruning only the upper triangular part for speed up. BSPF-ViT consistently outperforms state-of-the-art ViT methods at all pruning levels, increasing ImageNet classification accuracy by 1.3% on DeiT-T and 2.0% on DeiT-S, while reducing computational overhead by 50%. It achieves 40% speedup with improved accuracy across various ViTs.
- Abstract(参考訳): Vision Transformer (ViT) は様々な視覚タスクにまたがって印象的な結果を得たが、その高い計算コストは実用的な応用を制限している。
最近の手法は、重要でないトークンをプルーニングすることで、ViTの$O(n^2)$複雑さを減らすことを目的としている。
しかし、これらの手法はクエリ(Q)とキー(K)トークンを独立にプルーニングすることで精度を犠牲にすることが多く、見過ごされたトークンの相互作用によって性能が低下する。
この制限に対処するために、Q/Kトークンのプルーニングを最適化する効率的なViT(BSPF-ViT)のための新しい {\bf Block-based Symmetric Pruning and Fusion} を導入する。
一つの方向しか考慮していない従来の方法とは異なり、我々の手法はトークンの相互作用を考慮に入れ、どのトークンを保持するかを決定するために各トークンとその隣人を評価する。
保持されたトークンは、類似性の融合ステップを通じて圧縮され、計算コストを低減しつつ鍵情報を保存する。
Q/Kトークンの共有重みは対称アテンション行列を生成し、上三角部分のみをプルーニングしてスピードアップする。
BSPF-ViTは、あらゆるプルーニングレベルで最先端のViT法を一貫して上回り、ImageNet分類の精度はDeiT-Tで1.3%、DeiT-Sで2.0%向上し、計算オーバーヘッドを50%削減した。
40%のスピードアップを実現し、様々なViTで精度が向上した。
関連論文リスト
- Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation [57.56385490252605]
拡散変換器(DiT)はビデオ生成に必須であるが,注意の2次複雑さにより遅延が著しく低下する。
SVG2は,識別精度を最大化し,無駄を最小化する学習自由フレームワークである。
論文 参考訳(メタデータ) (2025-05-24T21:30:29Z) - GTP-ViT: Efficient Vision Transformers via Graph-based Token Propagation [30.343504537684755]
ビジョントランスフォーマー(ViT)はコンピュータビジョンの分野に革命をもたらしたが、リソースに制約のあるデバイスへの展開は依然として困難である。
ViTを高速化するために、トークンのプルーニングとトークンのマージアプローチが開発され、計算に関わるトークンの数を減らすことを目的としている。
本稿では,効率的なViTのためのモデル効率と情報保存のバランスをとることの課題を解決するために,グラフベースの新しいToken Propagation(GTP)手法を提案する。
論文 参考訳(メタデータ) (2023-11-06T11:14:19Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
視覚変換器 (ViT) は、その優れた性能のため、視覚タスクの一般的なアーキテクチャとして登場した。
本稿では,画像の異なる領域に対して,その重要度に応じて適応分解能を適用することを提案する。
提案手法を3つの異なるデータセット上で評価し,有望な性能を観察する。
論文 参考訳(メタデータ) (2023-11-02T12:48:43Z) - No Token Left Behind: Efficient Vision Transformer via Dynamic Token
Idling [55.203866875294516]
視覚変換器(ViT)はコンピュータビジョンタスクにおいて優れた性能を示した。
ViTの計算負担を軽減するために,様々なトークンプルーニング技術が導入されている。
性能と効率の優れたトレードオフを実現するための動的トークンアイドルベースのIdleViTを提案する。
論文 参考訳(メタデータ) (2023-10-09T12:10:41Z) - Prune Spatio-temporal Tokens by Semantic-aware Temporal Accumulation [89.88214896713846]
STAスコアは、時間的冗長性と意味的重要性の2つの重要な要因を考慮に入れている。
市販のビデオトランスフォーマーとビデオウィンにSTAモジュールを適用する。
結果: Kinetics-400 と something-Something V2 は 30% のオーバーシェルフ削減を実現し,0.2% の精度低下を実現した。
論文 参考訳(メタデータ) (2023-08-08T19:38:15Z) - Revisiting Token Pruning for Object Detection and Instance Segmentation [25.3324628669201]
オブジェクトとインスタンスのセグメンテーションの推論を高速化するトークンプルーニングについて検討する。
従来のトークンプルーニング法と比較して,ボックス・マスクともに1.5mAPから0.3mAPに低下した。
論文 参考訳(メタデータ) (2023-06-12T11:55:33Z) - Multi-Scale And Token Mergence: Make Your ViT More Efficient [3.087140219508349]
Vision Transformer (ViT) はコンピュータビジョン領域において一般的なモデルとして登場した。
より重要なトークンとマージすることで,非機密トークンからの情報を保持できる新しいトークンプルーニング手法を提案する。
提案手法は,DeiT-Sの精度は0.1%しか低下せず,計算コストの33%の大幅な削減を実現している。
論文 参考訳(メタデータ) (2023-06-08T02:58:15Z) - Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing
Important Tokens [65.4435926060951]
本稿では,超長周期の変換器の効率を,各層でより小さな表現に圧縮することで向上することを提案する。
我々のアルゴリズムは効率的であるだけでなく(4Kと16Kのベースラインに比べて3倍以上の効率向上を達成する)、多数のタスクで競合/ベターパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-05-07T10:32:18Z) - Joint Token Pruning and Squeezing Towards More Aggressive Compression of
Vision Transformers [2.0442992958844517]
視覚変換器を高効率で圧縮するための新しいTPS(Token Pruning & Squeezing Module)を提案する。
TPSは、プルーニングされたトークンの情報を、一方向近傍のマッチングと類似性に基づく融合ステップを介して、部分的な予約トークンに絞り込む。
提案手法は,DeiT-tinyを超えるスループットを向上し,精度はDeiT-tinyより4.78%向上する。
論文 参考訳(メタデータ) (2023-04-21T02:59:30Z) - Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully
Exploiting Self-Attention [36.90363317158731]
最小限のコストで適応的なスパーストークンプルーニングフレームワークを提案する。
提案手法では,DeiT-Sのスループットを50%向上し,トップ1の精度は0.2%低下した。
論文 参考訳(メタデータ) (2022-09-28T03:07:32Z) - Parameterization of Cross-Token Relations with Relative Positional
Encoding for Vision MLP [52.25478388220691]
視覚多層パーセプトロン(MLP)はコンピュータビジョンタスクにおいて有望な性能を示す。
トークンミキシングレイヤを使用して、トランスフォーマーが使用するマルチヘッド自己保持機構とは対照的に、クロストークンインタラクションをキャプチャする。
トークン混合のためのクロストークン関係を効率的に符号化する新しい位置空間ゲーティングユニット(PoSGU)を提案する。
論文 参考訳(メタデータ) (2022-07-15T04:18:06Z) - DynamicViT: Efficient Vision Transformers with Dynamic Token
Sparsification [134.9393799043401]
入力に基づいて冗長なトークンを抽出する動的トークンスペーシフィケーションフレームワークを提案する。
入力トークンの66%を階層的にプルーニングすることで,FLOPの31%37%を大幅に削減し,スループットを40%以上向上する。
DynamicViTモデルは、ImageNetの最先端CNNやビジョントランスフォーマーと比較して、非常に競争力のある複雑性/精度のトレードオフを実現することができる。
論文 参考訳(メタデータ) (2021-06-03T17:57:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。