論文の概要: DoRF: Doppler Radiance Fields for Robust Human Activity Recognition Using Wi-Fi
- arxiv url: http://arxiv.org/abs/2507.12132v1
- Date: Wed, 16 Jul 2025 11:00:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.364796
- Title: DoRF: Doppler Radiance Fields for Robust Human Activity Recognition Using Wi-Fi
- Title(参考訳): DoRF:Wi-Fiを用いたロバストな人間活動認識のためのドップラー放射場
- Authors: Navid Hasanzadeh, Shahrokh Valaee,
- Abstract要約: Wi-Fi Channel State Information (CSI) はリモートセンシングアプリケーションへの関心が高まっている。
近年の研究では、CSIから抽出したドップラー速度予測がヒト活動認識(HAR)を可能にすることが示されている。
本研究では,Wi-Fi CSIから抽出した1次元ドップラー速度予測から情報伝達3次元潜在運動表現を再構成する手法を提案する。
- 参考スコア(独自算出の注目度): 22.285570102169356
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Wi-Fi Channel State Information (CSI) has gained increasing interest for remote sensing applications. Recent studies show that Doppler velocity projections extracted from CSI can enable human activity recognition (HAR) that is robust to environmental changes and generalizes to new users. However, despite these advances, generalizability still remains insufficient for practical deployment. Inspired by neural radiance fields (NeRF), which learn a volumetric representation of a 3D scene from 2D images, this work proposes a novel approach to reconstruct an informative 3D latent motion representation from one-dimensional Doppler velocity projections extracted from Wi-Fi CSI. The resulting latent representation is then used to construct a uniform Doppler radiance field (DoRF) of the motion, providing a comprehensive view of the performed activity and improving the robustness to environmental variability. The results show that the proposed approach noticeably enhances the generalization accuracy of Wi-Fi-based HAR, highlighting the strong potential of DoRFs for practical sensing applications.
- Abstract(参考訳): Wi-Fi Channel State Information (CSI) はリモートセンシングアプリケーションへの関心が高まっている。
近年の研究では、CSIから抽出したドップラー速度予測により、環境変化に頑健なヒト活動認識(HAR)を可能とし、新規利用者に一般化できることが示されている。
しかし、これらの進歩にもかかわらず、汎用性はいまだに実践的な展開には不十分である。
2次元画像から3次元シーンの体積表現を学習するニューラルレイディアンス場(NeRF)に着想を得て,Wi-Fi CSIから抽出した1次元ドップラー速度投影から情報伝達3次元潜在動作表現を再構成する手法を提案する。
得られた潜在表現は、運動の均一なドップラー放射場(DoRF)を構築するために使用され、実行された活動の包括的ビューを提供し、環境変動に対する堅牢性を向上させる。
その結果,提案手法はWi-FiベースのHARの一般化精度を顕著に向上させ,実用的なセンシングアプリケーションにおけるDoRFの強みを浮き彫りにした。
関連論文リスト
- Neural Representation for Wireless Radiation Field Reconstruction: A 3D Gaussian Splatting Approach [8.644949917126755]
本稿では,無線放射場(WRF)再構成に基づくチャネルモデリングのための新しいフレームワークであるWRF-GSを提案する。
本稿では、電磁波物理をニューラルネットワーク設計に統合する拡張フレームワークであるWRF-GS+を提案する。
論文 参考訳(メタデータ) (2024-12-06T07:56:14Z) - Magnituder Layers for Implicit Neural Representations in 3D [23.135779936528333]
我々は、"magnituder"と呼ばれる新しいニューラルネットワーク層を導入する。
標準フィードフォワード層にマグニチュードを組み込むことで、推論速度と適応性を向上する。
我々のアプローチは、訓練された暗黙的ニューラル表現モデルにおいてゼロショットのパフォーマンス向上を可能にする。
論文 参考訳(メタデータ) (2024-10-13T08:06:41Z) - Enabling Visual Recognition at Radio Frequency [13.399148413043411]
PanoRadarは、RF分解能をLiDARに近づける新しいRFイメージングシステムである。
結果は、初めて、無線周波数での様々な視覚的認識タスクを可能にします。
以上の結果から,パノラダルの12棟の建物における堅牢な性能が示された。
論文 参考訳(メタデータ) (2024-05-29T20:52:59Z) - NeRF-DetS: Enhanced Adaptive Spatial-wise Sampling and View-wise Fusion Strategies for NeRF-based Indoor Multi-view 3D Object Detection [17.631688089207724]
屋内シーンでは、物体の位置とスケールの多様さが視覚的な3D知覚タスクを大きな課題にしている。
従来の研究では、暗黙の表現は視覚的な3D知覚タスクに役立てる能力を持っていることが示されている。
これらの問題に対処するために, 単純で効果的なNeRF-DetSを提案する。
論文 参考訳(メタデータ) (2024-04-22T06:59:03Z) - Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation [51.346733271166926]
Mesh2NeRFは、3次元生成タスクのためのテクスチャメッシュから地上構造放射場を導出するアプローチである。
各種タスクにおけるMesh2NeRFの有効性を検証する。
論文 参考訳(メタデータ) (2024-03-28T11:22:53Z) - Radar-Based Recognition of Static Hand Gestures in American Sign
Language [17.021656590925005]
本研究では,先進レーダ線トレーシングシミュレータによる合成データの有効性について検討した。
シミュレータは直感的な材料モデルを採用し、データ多様性を導入するように調整することができる。
NNを合成データで専用にトレーニングしているにもかかわらず、実際の測定データでテストを行うと、有望な性能を示す。
論文 参考訳(メタデータ) (2024-02-20T08:19:30Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - WiFi-based Spatiotemporal Human Action Perception [53.41825941088989]
SNN(End-to-end WiFi signal Neural Network)は、Wi-Fiのみのセンシングを可能にするために提案されている。
特に、3D畳み込みモジュールはWiFi信号の時間的連続性を探索することができ、特徴自己保持モジュールは支配的な特徴を明示的に維持することができる。
論文 参考訳(メタデータ) (2022-06-20T16:03:45Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFiベースのヒューマンアクション認識(HAR)は、スマートリビングやリモート監視といったアプリケーションにおいて、有望なソリューションと見なされている。
本稿では,無線機器からのWiFi信号を用いた動作を,多様なシナリオで直接認識する,エンド・ツー・エンドのGabor残差検知ネットワーク(GraSens)を提案する。
論文 参考訳(メタデータ) (2022-05-24T10:20:16Z) - Harvesting Ambient RF for Presence Detection Through Deep Learning [12.535149305258171]
本稿では,深層学習による人的存在検出における環境無線周波数(RF)信号の利用について検討する。
WiFi信号を例として,受信機で取得したチャネル状態情報(CSI)が伝搬環境に関する豊富な情報を含んでいることを示す。
畳み込みニューラルネットワーク(CNN)は、大きさと位相情報の両方を適切に訓練し、信頼性の高い存在検出を実現するように設計されている。
論文 参考訳(メタデータ) (2020-02-13T20:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。