RiemannLoRA: A Unified Riemannian Framework for Ambiguity-Free LoRA Optimization
- URL: http://arxiv.org/abs/2507.12142v1
- Date: Wed, 16 Jul 2025 11:17:12 GMT
- Title: RiemannLoRA: A Unified Riemannian Framework for Ambiguity-Free LoRA Optimization
- Authors: Vladimir Bogachev, Vladimir Aletov, Alexander Molozhavenko, Denis Bobkov, Vera Soboleva, Aibek Alanov, Maxim Rakhuba,
- Abstract summary: Low-Rank Adaptation (LoRA) has become a widely adopted standard for parameter-efficient fine-tuning of large language models.<n>We propose a novel approach that addresses both of the challenges simultaneously within a unified framework.
- Score: 37.56200829761571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Rank Adaptation (LoRA) has become a widely adopted standard for parameter-efficient fine-tuning of large language models (LLMs), significantly reducing memory and computational demands. However, challenges remain, including finding optimal initialization strategies or mitigating overparametrization in low-rank matrix factorization. In this work, we propose a novel approach that addresses both of the challenges simultaneously within a unified framework. Our method treats a set of fixed-rank LoRA matrices as a smooth manifold. Considering adapters as elements on this manifold removes overparametrization, while determining the direction of the fastest loss decrease along the manifold provides initialization. Special care is taken to obtain numerically stable and computationally efficient implementation of our method, using best practices from numerical linear algebra and Riemannian optimization. Experimental results on LLM and diffusion model architectures demonstrate that RiemannLoRA consistently improves both convergence speed and final performance over standard LoRA and its state-of-the-art modifications.
Related papers
- Automatic Rank Determination for Low-Rank Adaptation via Submodular Function Maximization [56.78271181959529]
SubLoRA is a rank determination method for Low-Rank Adaptation (LoRA) based on submodular function.<n>Our method combines solid theoretical foundations, second-order accuracy, and practical computational efficiency.
arXiv Detail & Related papers (2025-07-02T15:56:40Z) - UORA: Uniform Orthogonal Reinitialization Adaptation in Parameter-Efficient Fine-Tuning of Large Models [7.706953461614795]
Uniform Orthogonal Reinitialization Adaptation (UORA) is a novel parameter-efficient fine-tuning (PEFT) approach for Large Language Models (LLMs)
arXiv Detail & Related papers (2025-05-26T15:56:40Z) - Efficient Differentiable Approximation of Generalized Low-rank Regularization [64.73416824444328]
Low-rank regularization (LRR) has been widely applied in various machine learning tasks.<n>In this paper, we propose an efficient differentiable approximation of LRR.
arXiv Detail & Related papers (2025-05-21T11:49:17Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.<n>Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.<n>We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.<n>This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [66.27334633749734]
As language models grow in size, memory demands for backpropagation increase.
Zeroth-order (ZOZO) optimization methods offer a memory-efficient alternative.
We show that SubZero enhances fine-tuning and achieves faster results compared to standard ZOZO approaches.
arXiv Detail & Related papers (2024-10-11T17:01:43Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Enhancing Parameter Efficiency and Generalization in Large-Scale Models: A Regularized and Masked Low-Rank Adaptation Approach [10.980433187379868]
Low-Rank Adaptation (LoRA) has been developed to reduce resource consumption while maintaining satisfactory fine-tuning results.
This paper investigates the intrinsic dimension of the matrix updates approximated by the LoRA method and reveals the performance benefits of increasing this intrinsic dimension.
arXiv Detail & Related papers (2024-07-16T15:26:31Z) - OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models [0.0]
Low-Rank Adaptation (LoRA) has emerged as a promising method to mitigate these issues.
OLoRA significantly accelerates the convergence of LLM training.
OLoRA exhibits improved performance compared to standard LoRA across a variety of language modeling tasks.
arXiv Detail & Related papers (2024-06-03T20:37:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.