UORA: Uniform Orthogonal Reinitialization Adaptation in Parameter-Efficient Fine-Tuning of Large Models
- URL: http://arxiv.org/abs/2505.20154v1
- Date: Mon, 26 May 2025 15:56:40 GMT
- Title: UORA: Uniform Orthogonal Reinitialization Adaptation in Parameter-Efficient Fine-Tuning of Large Models
- Authors: Xueyan Zhang, Jinman Zhao, Zhifei Yang, Yibo Zhong, Shuhao Guan, Linbo Cao, Yining Wang,
- Abstract summary: Uniform Orthogonal Reinitialization Adaptation (UORA) is a novel parameter-efficient fine-tuning (PEFT) approach for Large Language Models (LLMs)
- Score: 7.706953461614795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Uniform Orthogonal Reinitialization Adaptation (UORA), a novel parameter-efficient fine-tuning (PEFT) approach for Large Language Models (LLMs). UORA achieves state-of-the-art performance and parameter efficiency by leveraging a low-rank approximation method to reduce the number of trainable parameters. Unlike existing methods such as LoRA and VeRA, UORA employs an interpolation-based reparametrization mechanism that selectively reinitializes rows and columns in frozen projection matrices, guided by the vector magnitude heuristic. This results in substantially fewer trainable parameters compared to LoRA and outperforms VeRA in computation and storage efficiency. Comprehensive experiments across various benchmarks demonstrate UORA's superiority in achieving competitive fine-tuning performance with negligible computational overhead. We demonstrate its performance on GLUE and E2E benchmarks and its effectiveness in instruction-tuning large language models and image classification models. Our contributions establish a new paradigm for scalable and resource-efficient fine-tuning of LLMs.
Related papers
- OSoRA: Output-Dimension and Singular-Value Initialized Low-Rank Adaptation [9.048461365342204]
We present OSoRA, a novel PEFT method for Large Language Models (LLMs)<n>OSoRA substantially reduces computational resource requirements by minimizing the number of trainable parameters during fine-tuning.<n> Comprehensive evaluations across mathematical reasoning, common sense reasoning, and other benchmarks demonstrate that OSoRA achieves comparable or superior performance to state-of-the-art methods.
arXiv Detail & Related papers (2025-05-20T13:34:06Z) - Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning? [42.362388367152256]
Large language models (LLMs) are used to fine-tune a parameter-efficient version of Code Llama using LoRA.<n>Our method achieves competitive or superior results in terms of Root Mean Square Error (RMSE) while significantly reducing computational overhead.
arXiv Detail & Related papers (2025-04-08T13:15:47Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.<n>Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.<n>We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Balancing LoRA Performance and Efficiency with Simple Shard Sharing [8.827921242078883]
textbfOptimal textbfShard textbfSharing textbfIntegration in textbfLoRA, a novel PEFT approach that addresses this trade-off through a simple shard-sharing mechanism.<n>Fossils significantly outperforms standard LoRA and its prominent variants in both model performance metrics and computational efficiency.
arXiv Detail & Related papers (2024-09-19T10:26:42Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models.
We propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters.
Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
arXiv Detail & Related papers (2024-05-20T15:48:32Z) - Scaling Sparse Fine-Tuning to Large Language Models [67.59697720719672]
Large Language Models (LLMs) are difficult to fully fine-tune due to their sheer number of parameters.
We propose SpIEL, a novel sparse finetuning method which maintains an array of parameter indices and the deltas of these parameters relative to their pretrained values.
We show that SpIEL is superior to popular parameter-efficient fine-tuning methods like LoRA in terms of performance and comparable in terms of run time.
arXiv Detail & Related papers (2024-01-29T18:43:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.