PRISM: Distributed Inference for Foundation Models at Edge
- URL: http://arxiv.org/abs/2507.12145v1
- Date: Wed, 16 Jul 2025 11:25:03 GMT
- Title: PRISM: Distributed Inference for Foundation Models at Edge
- Authors: Muhammad Azlan Qazi, Alexandros Iosifidis, Qi Zhang,
- Abstract summary: PRISM is a communication-efficient and compute-aware strategy for distributed Transformer inference on edge devices.<n>We evaluate PRISM on ViT, BERT, and GPT-2 across diverse datasets.
- Score: 73.54372283220444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models (FMs) have achieved remarkable success across a wide range of applications, from image classification to natural langurage processing, but pose significant challenges for deployment at edge. This has sparked growing interest in developing practical and efficient strategies for bringing foundation models to edge environments. In this work, we propose PRISM, a communication-efficient and compute-aware strategy for distributed Transformer inference on edge devices. Our method leverages a Segment Means representation to approximate intermediate output features, drastically reducing inter-device communication. Additionally, we restructure the self-attention mechanism to eliminate redundant computations caused by per-device Key/Value calculation in position-wise partitioning and design a partition-aware causal masking scheme tailored for autoregressive models. We evaluate PRISM on ViT, BERT, and GPT-2 across diverse datasets, namely CIFAR-10, CIFAR-100, ImageNet-1k, GLUE, and CBT. Our results demonstrate substantial reductions in communication overhead (up to 99.2% for BERT at compression rate CR = 128) and per-device computation (51.24% for BERT at the same setting), with only minor accuracy degradation. This method offers a scalable and practical solution for deploying foundation models in distributed resource-constrained environments.
Related papers
- MTGR: Industrial-Scale Generative Recommendation Framework in Meituan [28.92150571719811]
We propose MTGR (Meituan Generative Recommendation) to address this issue.<n> MTGR achieves training and inference acceleration through user-level compression to ensure efficient scaling.<n>This breakthrough was successfully deployed on Meituan, the world's largest food delivery platform.
arXiv Detail & Related papers (2025-05-24T11:47:28Z) - The Larger the Merrier? Efficient Large AI Model Inference in Wireless Edge Networks [56.37880529653111]
The demand for large computation model (LAIM) services is driving a paradigm shift from traditional cloud-based inference to edge-based inference for low-latency, privacy-preserving applications.<n>In this paper, we investigate the LAIM-inference scheme, where a pre-trained LAIM is pruned and partitioned into on-device and on-server sub-models for deployment.
arXiv Detail & Related papers (2025-05-14T08:18:55Z) - Resource Management for Low-latency Cooperative Fine-tuning of Foundation Models at the Network Edge [35.40849522296486]
Large-scale foundation models (FoMos) can perform human-like intelligence.
FoMos need to be adapted to specialized downstream tasks through fine-tuning techniques.
We advocate multi-device cooperation within the device-edge cooperative fine-tuning paradigm.
arXiv Detail & Related papers (2024-07-13T12:47:14Z) - PRANCE: Joint Token-Optimization and Structural Channel-Pruning for Adaptive ViT Inference [44.77064952091458]
PRANCE is a Vision Transformer compression framework that jointly optimize the activated channels and reduces tokens, based on the characteristics of inputs.
We introduce a novel "Result-to-Go" training mechanism that models ViTs' inference process as a sequential decision process.
Our framework is shown to be compatible with various token optimization techniques such as pruning, merging, and pruning-merging strategies.
arXiv Detail & Related papers (2024-07-06T09:04:27Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Distributed Pruning Towards Tiny Neural Networks in Federated Learning [12.63559789381064]
FedTiny is a distributed pruning framework for federated learning.
It generates specialized tiny models for memory- and computing-constrained devices.
It achieves an accuracy improvement of 2.61% while significantly reducing the computational cost by 95.91%.
arXiv Detail & Related papers (2022-12-05T01:58:45Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
We propose a content-based sparse attention method, as an alternative to dense self-attention.
Specifically, we cluster and then aggregate key and value tokens, as a content-based method of reducing the total token count.
The resulting clustered-token sequence retains the semantic diversity of the original signal, but can be processed at a lower computational cost.
arXiv Detail & Related papers (2022-08-28T04:18:27Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
This paper aims to unify CNN and Transformer to take advantage of their learning merits for image deraining.
A novel multi-input attention module (MAM) is proposed to associate rain removal and background recovery.
Our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average.
arXiv Detail & Related papers (2022-07-21T12:50:54Z) - You Only Compress Once: Towards Effective and Elastic BERT Compression
via Exploit-Explore Stochastic Nature Gradient [88.58536093633167]
Existing model compression approaches require re-compression or fine-tuning across diverse constraints to accommodate various hardware deployments.
We propose a novel approach, YOCO-BERT, to achieve compress once and deploy everywhere.
Compared with state-of-the-art algorithms, YOCO-BERT provides more compact models, yet achieving 2.1%-4.5% average accuracy improvement on the GLUE benchmark.
arXiv Detail & Related papers (2021-06-04T12:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.