Revealing the Ancient Beauty: Digital Reconstruction of Temple Tiles using Computer Vision
- URL: http://arxiv.org/abs/2507.12195v1
- Date: Wed, 16 Jul 2025 12:46:04 GMT
- Title: Revealing the Ancient Beauty: Digital Reconstruction of Temple Tiles using Computer Vision
- Authors: Arkaprabha Basu,
- Abstract summary: Machine learning, deep learning, and computer vision techniques have revolutionised developing sectors like 3D reconstruction.<n>We suggest three cutting-edge techniques in recognition of the special qualities of Indian monuments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern digitised approaches have dramatically changed the preservation and restoration of cultural treasures, integrating computer scientists into multidisciplinary projects with ease. Machine learning, deep learning, and computer vision techniques have revolutionised developing sectors like 3D reconstruction, picture inpainting,IoT-based methods, genetic algorithms, and image processing with the integration of computer scientists into multidisciplinary initiatives. We suggest three cutting-edge techniques in recognition of the special qualities of Indian monuments, which are famous for their architectural skill and aesthetic appeal. First is the Fractal Convolution methodology, a segmentation method based on image processing that successfully reveals subtle architectural patterns within these irreplaceable cultural buildings. The second is a revolutionary Self-Sensitive Tile Filling (SSTF) method created especially for West Bengal's mesmerising Bankura Terracotta Temples with a brand-new data augmentation method called MosaicSlice on the third. Furthermore, we delve deeper into the Super Resolution strategy to upscale the images without losing significant amount of quality. Our methods allow for the development of seamless region-filling and highly detailed tiles while maintaining authenticity using a novel data augmentation strategy within affordable costs introducing automation. By providing effective solutions that preserve the delicate balance between tradition and innovation, this study improves the subject and eventually ensures unrivalled efficiency and aesthetic excellence in cultural heritage protection. The suggested approaches advance the field into an era of unmatched efficiency and aesthetic quality while carefully upholding the delicate equilibrium between tradition and innovation.
Related papers
- BLIP3-o: A Family of Fully Open Unified Multimodal Models-Architecture, Training and Dataset [140.1967962502411]
We introduce a novel approach that employs a diffusion transformer to generate semantically rich CLIP image features.<n>A sequential pretraining strategy for unified models-first training on image understanding and subsequently on image generation offers practical advantages.<n>Building on our innovative model design, training recipe, and datasets, we develop BLIP3-o, a suite of state-of-the-art unified multimodal models.
arXiv Detail & Related papers (2025-05-14T17:11:07Z) - DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration [2.7523980737007414]
Astrophotography presents unique challenges for deep learning due to limited training data.<n>This work explores hybrid strategies, such as the Deep Image Prior (DIP) model, which facilitates blind training but is susceptible to overfitting.<n>We propose enhancements to the DIP model's baseline performance through several advanced techniques.
arXiv Detail & Related papers (2025-03-20T09:33:16Z) - A Generative Approach to High Fidelity 3D Reconstruction from Text Data [0.0]
This research proposes a fully automated pipeline that seamlessly integrates text-to-image generation, various image processing techniques, and deep learning methods for reflection removal and 3D reconstruction.<n>By leveraging state-of-the-art generative models like Stable Diffusion, the methodology translates natural language inputs into detailed 3D models through a multi-stage workflow.<n>This approach addresses key challenges in generative reconstruction, such as maintaining semantic coherence, managing geometric complexity, and preserving detailed visual information.
arXiv Detail & Related papers (2025-03-05T16:54:15Z) - A 3D Facial Reconstruction Evaluation Methodology: Comparing Smartphone Scans with Deep Learning Based Methods Using Geometry and Morphometry Criteria [60.865754842465684]
Three-dimensional (3D) facial shape analysis has gained interest due to its potential clinical applications.<n>High cost of advanced 3D facial acquisition systems limits their widespread use, driving the development of low-cost acquisition and reconstruction methods.<n>This study introduces a novel evaluation methodology that goes beyond traditional geometry-based benchmarks by integrating morphometric shape analysis techniques.
arXiv Detail & Related papers (2025-02-13T15:47:45Z) - Directing Mamba to Complex Textures: An Efficient Texture-Aware State Space Model for Image Restoration [75.51789992466183]
TAMambaIR simultaneously perceives image textures achieves and a trade-off between performance and efficiency.<n>Extensive experiments on benchmarks for image super-resolution, deraining, and low-light image enhancement demonstrate that TAMambaIR achieves state-of-the-art performance with significantly improved efficiency.
arXiv Detail & Related papers (2025-01-27T23:53:49Z) - From Noise to Nuance: Advances in Deep Generative Image Models [8.802499769896192]
Deep learning-based image generation has undergone a paradigm shift since 2021.<n>Recent developments in Stable Diffusion, DALL-E, and consistency models have redefined the capabilities and performance boundaries of image synthesis.<n>We investigate how enhanced multi-modal understanding and zero-shot generation capabilities are reshaping practical applications across industries.
arXiv Detail & Related papers (2024-12-12T02:09:04Z) - Advancing Urban Renewal: An Automated Approach to Generating Historical
Arcade Facades with Stable Diffusion Models [1.645684081891833]
This study introduces a new methodology for automatically generating images of historical arcade facades.
By classifying and tagging a variety of arcade styles, we have constructed several realistic arcade facade image datasets.
Our approach has demonstrated high levels of precision, authenticity, and diversity in the generated images.
arXiv Detail & Related papers (2023-11-20T08:03:12Z) - Transforming Pixels into a Masterpiece: AI-Powered Art Restoration using
a Novel Distributed Denoising CNN (DDCNN) [0.0]
We present an innovative approach using deep learning, specifically Convolutional Neural Networks (CNNs) and Computer Vision techniques.
This dataset trains a Distributed Denoising CNN (DDCNN) to remove distortions while preserving intricate details.
Our method is adaptable to different distortion types and levels, making it suitable for various deteriorated artworks.
arXiv Detail & Related papers (2023-10-08T19:59:42Z) - Neural Point-based Volumetric Avatar: Surface-guided Neural Points for
Efficient and Photorealistic Volumetric Head Avatar [62.87222308616711]
We propose fullname (name), a method that adopts the neural point representation and the neural volume rendering process.
Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map.
By design, our name is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars.
arXiv Detail & Related papers (2023-07-11T03:40:10Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.