Universal Fourier Neural Operators for Micromechanics
- URL: http://arxiv.org/abs/2507.12233v2
- Date: Wed, 23 Jul 2025 08:07:08 GMT
- Title: Universal Fourier Neural Operators for Micromechanics
- Authors: Binh Huy Nguyen, Matti Schneider,
- Abstract summary: We advocate Fourier Neural Operators (FNOs) for micromechanics, empowering them by insights from computational micromechanics methods.<n>We construct an FNO surrogate mimicking the basic scheme for FFT-based methods and show that the resulting operator predicts solutions to cell problems with arbitrary stiffness distribution.<n>The obtained neural operator complies with the same memory requirements as the basic scheme and comes with runtimes proportional to classical FFT solvers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving cell problems in homogenization is hard, and available deep-learning frameworks fail to match the speed and generality of traditional computational frameworks. More to the point, it is generally unclear what to expect of machine-learning approaches, let alone single out which approaches are promising. In the work at hand, we advocate Fourier Neural Operators (FNOs) for micromechanics, empowering them by insights from computational micromechanics methods based on the fast Fourier transform (FFT). We construct an FNO surrogate mimicking the basic scheme foundational for FFT-based methods and show that the resulting operator predicts solutions to cell problems with arbitrary stiffness distribution only subject to a material-contrast constraint up to a desired accuracy. In particular, there are no restrictions on the material symmetry like isotropy, on the number of phases and on the geometry of the interfaces between materials. Also, the provided fidelity is sharp and uniform, providing explicit guarantees leveraging our physical empowerment of FNOs. To show the desired universal approximation property, we construct an FNO explicitly that requires no training to begin with. Still, the obtained neural operator complies with the same memory requirements as the basic scheme and comes with runtimes proportional to classical FFT solvers. In particular, large-scale problems with more than 100 million voxels are readily handled. The goal of this work is to underline the potential of FNOs for solving micromechanical problems, linking FFT-based methods to FNOs. This connection is expected to provide a fruitful exchange between both worlds.
Related papers
- The Finite Element Neural Network Method: One Dimensional Study [0.0]
This research introduces the finite element neural network method (FENNM) within the framework of the Petrov-Galerkin method.<n>FENNM uses convolution operations to approximate the weighted residual of the differential equations.<n>This enables the integration of forcing terms and natural boundary conditions into the loss function similar to conventional finite element method (FEM) solvers.
arXiv Detail & Related papers (2025-01-21T21:39:56Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.<n>To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.<n> Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Physics-embedded Fourier Neural Network for Partial Differential Equations [35.41134465442465]
We introduce Physics-embedded Fourier Neural Networks (PeFNN) with flexible and explainable error.
PeFNN is designed to enforce momentum conservation and yields interpretable nonlinear expressions.
We demonstrate its outstanding performance for challenging real-world applications such as large-scale flood simulations.
arXiv Detail & Related papers (2024-07-15T18:30:39Z) - A finite operator learning technique for mapping the elastic properties of microstructures to their mechanical deformations [0.0]
We introduce a method that integrates the core ideas of the finite element method with physics-informed neural networks and concept of neural operators.
This approach generalizes and enhances each method, learning the parametric solution for mechanical problems without relying on data from other resources.
arXiv Detail & Related papers (2024-03-28T19:57:48Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
We build on intuition that neural operator learning inherently induces an approximation error.
We show that our approach reduces GPU memory usage by up to 50% and improves throughput by 58% with little or no reduction in accuracy.
arXiv Detail & Related papers (2023-07-27T17:42:06Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Domain Agnostic Fourier Neural Operators [15.29112632863168]
We introduce domain agnostic Fourier neural operator (DAFNO) for learning surrogates with irregular geometries and evolving domains.
The key idea is to incorporate a smoothed characteristic function in the integral layer architecture of FNOs.
DAFNO has achieved state-of-the-art accuracy as compared to baseline neural operator models.
arXiv Detail & Related papers (2023-04-30T13:29:06Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
We propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries.
Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid.
We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems.
arXiv Detail & Related papers (2022-07-11T21:55:47Z) - Factorized Fourier Neural Operators [77.47313102926017]
The Factorized Fourier Neural Operator (F-FNO) is a learning-based method for simulating partial differential equations.
We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver.
arXiv Detail & Related papers (2021-11-27T03:34:13Z) - Adaptive Fourier Neural Operators: Efficient Token Mixers for
Transformers [55.90468016961356]
We propose an efficient token mixer that learns to mix in the Fourier domain.
AFNO is based on a principled foundation of operator learning.
It can handle a sequence size of 65k and outperforms other efficient self-attention mechanisms.
arXiv Detail & Related papers (2021-11-24T05:44:31Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.