A finite operator learning technique for mapping the elastic properties of microstructures to their mechanical deformations
- URL: http://arxiv.org/abs/2404.00074v2
- Date: Mon, 3 Jun 2024 09:03:10 GMT
- Title: A finite operator learning technique for mapping the elastic properties of microstructures to their mechanical deformations
- Authors: Shahed Rezaei, Reza Najian Asl, Shirko Faroughi, Mahdi Asgharzadeh, Ali Harandi, Rasoul Najafi Koopas, Gottfried Laschet, Stefanie Reese, Markus Apel,
- Abstract summary: We introduce a method that integrates the core ideas of the finite element method with physics-informed neural networks and concept of neural operators.
This approach generalizes and enhances each method, learning the parametric solution for mechanical problems without relying on data from other resources.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To obtain fast solutions for governing physical equations in solid mechanics, we introduce a method that integrates the core ideas of the finite element method with physics-informed neural networks and concept of neural operators. This approach generalizes and enhances each method, learning the parametric solution for mechanical problems without relying on data from other resources (e.g. other numerical solvers). We propose directly utilizing the available discretized weak form in finite element packages to construct the loss functions algebraically, thereby demonstrating the ability to find solutions even in the presence of sharp discontinuities. Our focus is on micromechanics as an example, where knowledge of deformation and stress fields for a given heterogeneous microstructure is crucial for further design applications. The primary parameter under investigation is the Young's modulus distribution within the heterogeneous solid system. Our investigations reveal that physics-based training yields higher accuracy compared to purely data-driven approaches for unseen microstructures. Additionally, we offer two methods to directly improve the process of obtaining high-resolution solutions, avoiding the need to use basic interpolation techniques. First is based on an autoencoder approach to enhance the efficiency for calculation on high resolution grid point. Next, Fourier-based parametrization is utilized to address complex 2D and 3D problems in micromechanics. The latter idea aims to represent complex microstructures efficiently using Fourier coefficients. Comparisons with other well-known operator learning algorithms, further emphasize the advantages of the newly proposed method.
Related papers
- Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs [0.0]
We introduce a method that combines neural operators, physics-informed machine learning, and standard numerical methods for solving PDEs.
We can parametrically solve partial differential equations in a data-free manner and provide accurate sensitivities.
Our study focuses on the steady-state heat equation within heterogeneous materials.
arXiv Detail & Related papers (2024-07-04T21:23:12Z) - MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
We develop MultiSTOP, a Reinforcement Learning framework for solving functional equations in physics.
This new methodology produces actual numerical solutions instead of bounds on them.
arXiv Detail & Related papers (2024-04-23T10:51:31Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
We introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization.
The results of our physics-aware CNN are compared to a state-of-the-art data-based approach.
arXiv Detail & Related papers (2023-08-04T05:09:06Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
We provide an insight into how data-driven approaches can complement conventional techniques to solve engineering and physics problems.
We highlight a novel and fast machine learning-based approach to learning the solution operator of a PDE operator learning.
arXiv Detail & Related papers (2023-01-30T23:29:33Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
We propose a solution to simulate hyper-elastic materials using a data-driven approach.
A neural network is trained to learn the non-linear relationship between boundary conditions and the resulting displacement field.
The results show that our network architecture trained with a limited amount of data can predict the displacement field in less than a millisecond.
arXiv Detail & Related papers (2021-09-17T12:15:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.