論文の概要: SWE-Perf: Can Language Models Optimize Code Performance on Real-World Repositories?
- arxiv url: http://arxiv.org/abs/2507.12415v1
- Date: Wed, 16 Jul 2025 17:05:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.482331
- Title: SWE-Perf: Can Language Models Optimize Code Performance on Real-World Repositories?
- Title(参考訳): SWE-Perf: 言語モデルは実世界のリポジトリ上でのコードパフォーマンスを最適化できるか?
- Authors: Xinyi He, Qian Liu, Mingzhe Du, Lin Yan, Zhijie Fan, Yiming Huang, Zejian Yuan, Zejun Ma,
- Abstract要約: SWE-Perfは、認証されたリポジトリコンテキスト内のコードパフォーマンス最適化タスクにおいて、LLM(Large Language Models)を評価するために設計された最初のベンチマークである。
SWE-Perfは140の慎重にキュレートされたインスタンスで構成されており、それぞれが人気のあるGitHubリポジトリのパフォーマンス改善プルリクエストに由来する。
- 参考スコア(独自算出の注目度): 32.67971774793393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code performance optimization is paramount in real-world software engineering and critical for production-level systems. While Large Language Models (LLMs) have demonstrated impressive capabilities in code generation and bug fixing, their proficiency in enhancing code performance at the repository level remains largely unexplored. To address this gap, we introduce SWE-Perf, the first benchmark specifically designed to systematically evaluate LLMs on code performance optimization tasks within authentic repository contexts. SWE-Perf comprises 140 carefully curated instances, each derived from performance-improving pull requests from popular GitHub repositories. Each benchmark instance includes the relevant codebase, target functions, performance-related tests, expert-authored patches, and executable environments. Through a comprehensive evaluation of representative methods that span file-level and repo-level approaches (e.g., Agentless and OpenHands), we reveal a substantial capability gap between existing LLMs and expert-level optimization performance, highlighting critical research opportunities in this emerging field.
- Abstract(参考訳): コードパフォーマンスの最適化は、実世界のソフトウェア工学において最重要であり、実運用レベルのシステムにとって重要である。
LLM(Large Language Models)はコード生成とバグ修正において印象的な機能を示しているが、リポジトリレベルでのコードパフォーマンス向上の能力は、まだ明らかにされていない。
このギャップに対処するため、私たちはSWE-Perfを紹介します。SWE-Perfは、実際のリポジトリコンテキスト内でのコードパフォーマンス最適化タスクにおいて、LSMを体系的に評価するように設計された最初のベンチマークです。
SWE-Perfは140の慎重にキュレートされたインスタンスで構成されており、それぞれが人気のあるGitHubリポジトリのパフォーマンス改善プルリクエストに由来する。
各ベンチマークインスタンスには、関連するコードベース、ターゲット関数、パフォーマンス関連のテスト、専門家が承認したパッチ、実行環境が含まれている。
ファイルレベルとリポジトリレベルのアプローチ(例えば、AgenlessやOpenHands)にまたがる代表的手法を総合的に評価することで、既存のLLMとエキスパートレベルの最適化性能の間に大きなギャップが見られ、この新興分野における重要な研究機会が浮かび上がっています。
関連論文リスト
- MERA Code: A Unified Framework for Evaluating Code Generation Across Tasks [56.34018316319873]
我々は,最新のLLMをロシア語で評価するためのベンチマークであるMERA Codeを提案する。
このベンチマークには、8つのプログラミング言語にまたがる11の評価タスクが含まれている。
我々はオープンなLLMとフロンティアAPIモデルを評価し、非英語言語における実用的なコーディングタスクの観点からそれらの制限を分析した。
論文 参考訳(メタデータ) (2025-07-16T14:31:33Z) - Evaluating Large Language Models on Non-Code Software Engineering Tasks [4.381476817430934]
大規模言語モデル(LLM)は、コード理解と生成において顕著な能力を示している。
ソフトウェア工学言語理解(SELU)と呼ばれる最初の包括的なベンチマークを提示する。
SELUは、分類、回帰、名前付きエンティティ認識(NER)とマスケッド言語モデリング(MLM)のターゲットをカバーし、さまざまなソースからデータを引き出す。
論文 参考訳(メタデータ) (2025-06-12T15:52:32Z) - FEA-Bench: A Benchmark for Evaluating Repository-Level Code Generation for Feature Implementation [26.14778133391999]
FEA-Benchは、大規模な言語モデルがコードリポジトリ内でインクリメンタルな開発を行う能力を評価するために設計されたベンチマークである。
83のGitHubリポジトリからのプルリクエストを収集し、ルールベースとインテントベースのフィルタリングを使用して、新機能開発にフォーカスしたタスクインスタンスを構築します。
論文 参考訳(メタデータ) (2025-03-09T16:11:57Z) - DI-BENCH: Benchmarking Large Language Models on Dependency Inference with Testable Repositories at Scale [39.92722886613929]
DI-BENCHは、大規模言語モデルの依存性推論能力を評価するために設計された、大規模なベンチマークおよび評価フレームワークである。
ベンチマークでは、Python、C#、Rust、JavaScriptにまたがるテスト環境を備えた581のリポジトリが提供されている。
テキストと実行ベースのメトリクスによる大規模な実験により、現在の最高のパフォーマンスモデルは42.9%の実行パス率しか達成していないことが明らかになった。
論文 参考訳(メタデータ) (2025-01-23T14:27:11Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [76.59316249991657]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
複数面シナリオと複雑なグラフワークフロー構造を備えた統合ワークフロー生成ベンチマークであるWorfBenchを紹介する。
また,サブシーケンスとサブグラフマッチングアルゴリズムを利用したシステム評価プロトコルWorfEvalを提案する。
我々は、生成されたタスクが下流のタスクを強化し、推論中により少ない時間で優れたパフォーマンスを達成することを観察する。
論文 参考訳(メタデータ) (2024-10-10T12:41:19Z) - DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation [48.11754113512047]
この研究には、コード生成ベンチマークデータセットであるDOMAINEVALが含まれており、6つの人気のあるドメインを含んでいる。
私たちのパイプラインは完全に自動化され、コードリポジトリから研究対象のフォーマットへのプッシュボットの構築が可能になります。
本研究のコントリビューションには、コード生成ベンチマークデータセットであるDOMAINEVAL、コードベンチマークを構築するための完全自動化パイプライン、DOMAINEVALのパフォーマンスに基づいたコード生成タスクにおけるLLMの制限の識別が含まれている。
論文 参考訳(メタデータ) (2024-08-23T16:33:58Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
本稿ではレポジトリレベルのコード生成を評価するために設計された新しいベンチマークであるRepoExecを紹介する。
実行可能性、包括的なテストケース生成による機能的正当性、ファイル間のコンテキストの正確な利用という3つの重要な側面に注目します。
論文 参考訳(メタデータ) (2024-06-17T10:45:22Z) - Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository [4.767858874370881]
実世界のリポジトリ内でクラスレベルのコードを生成する際に,LLMを厳格に評価するためのベンチマークであるRepoClassBenchを紹介する。
RepoClassBenchには、リポジトリの選択からJava、Python、C#にまたがる"Natural Language to Class Generation"タスクが含まれている。
Retrieve-Repotools-Reflect (RRR)は,レポジトリレベルのコンテキストを反復的にナビゲートし,推論する静的解析ツールを備えた新しいアプローチである。
論文 参考訳(メタデータ) (2024-04-22T03:52:54Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。