Characterizing State Space Model (SSM) and SSM-Transformer Hybrid Language Model Performance with Long Context Length
- URL: http://arxiv.org/abs/2507.12442v2
- Date: Sat, 19 Jul 2025 08:24:57 GMT
- Title: Characterizing State Space Model (SSM) and SSM-Transformer Hybrid Language Model Performance with Long Context Length
- Authors: Saptarshi Mitra, Rachid Karami, Haocheng Xu, Sitao Huang, Hyoukjun Kwon,
- Abstract summary: The demand for machine intelligence capable of processing continuous, long-context inputs on local devices is growing rapidly.<n>Traditional Transformer architectures make them inefficient and often unusable for these tasks.<n>This has spurred a paradigm shift towards new architectures like State Space Models (SSMs) and hybrids, which promise near-linear scaling.
- Score: 2.029073851107784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand for machine intelligence capable of processing continuous, long-context inputs on local devices is growing rapidly. However, the quadratic complexity and memory requirements of traditional Transformer architectures make them inefficient and often unusable for these tasks. This has spurred a paradigm shift towards new architectures like State Space Models (SSMs) and hybrids, which promise near-linear scaling. While most current research focuses on the accuracy and theoretical throughput of these models, a systematic performance characterization on practical consumer hardware is critically needed to guide system-level optimization and unlock new applications. To address this gap, we present a comprehensive, comparative benchmarking of carefully selected Transformer, SSM, and hybrid models specifically for long-context inference on consumer and embedded GPUs. Our analysis reveals that SSMs are not only viable but superior for this domain, capable of processing sequences up to 220K tokens on a 24GB consumer GPU-approximately 4x longer than comparable Transformers. While Transformers may be up to 1.8x faster at short sequences, SSMs demonstrate a dramatic performance inversion, becoming up to 4x faster at very long contexts (~57K tokens). Our operator-level analysis reveals that custom, hardware-aware SSM kernels dominate the inference runtime, accounting for over 55% of latency on edge platforms, identifying them as a primary target for future hardware acceleration. We also provide detailed, device-specific characterization results to guide system co-design for the edge. To foster further research, we will open-source our characterization framework.
Related papers
- Systolic Array-based Accelerator for Structured State-Space Models [1.137896937254823]
State-Space Models (SSMs) process very long data sequences more efficiently than recurrent and Transformer-based models.<n>In this paper, we introduce a specialized hardware accelerator, EpochCore, for accelerating SSMs.<n>EpochCore achieves on average 2000x improvement in performance on LRA datasets compared to a GPU.
arXiv Detail & Related papers (2025-07-29T00:01:57Z) - QS4D: Quantization-aware training for efficient hardware deployment of structured state-space sequential models [0.8474310104568011]
Structured State Space models (SSM) have emerged as a new class of deep learning models.<n>QAT can significantly reduce the complexity of SSMs by up to two orders of magnitude across various performance metrics.<n>We show that QAT enhances robustness to analog noise and enables structural pruning.
arXiv Detail & Related papers (2025-07-08T15:19:14Z) - Understanding and Optimizing Multi-Stage AI Inference Pipelines [11.254219071373319]
HERMES is a Heterogeneous Multi-stage LLM inference Execution Simulator.<n> HERMES supports heterogeneous clients executing multiple models concurrently unlike prior frameworks.<n>We explore the impact of reasoning stages on end-to-end latency, optimal strategies for hybrid pipelines, and the architectural implications of remote KV cache retrieval.
arXiv Detail & Related papers (2025-04-14T00:29:49Z) - Leveraging State Space Models in Long Range Genomics [1.130790932059036]
Long-range dependencies are critical for understanding genomic structure and function, yet most conventional methods struggle with them.<n>We explore State Space Models (SSMs) as a promising alternative by benchmarking two SSM-inspired architectures on long-range genomics modeling tasks.<n>SSMs match transformer performance and exhibit impressive zero-shot extrapolation across multiple tasks, handling contexts 10 to 100 times longer than those seen during training.
arXiv Detail & Related papers (2025-04-07T18:34:06Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
State-space models (SSMs) that utilize linear, time-invariant (LTI) systems are known for their effectiveness in learning long sequences.
We develop a new parameterization scheme, called HOPE, for LTI systems that utilize Markov parameters within Hankel operators.
Our new parameterization endows the SSM with non-decaying memory within a fixed time window, which is empirically corroborated by a sequential CIFAR-10 task with padded noise.
arXiv Detail & Related papers (2024-05-22T20:20:14Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
Transformer-based models have emerged as one of the most widely used architectures for natural language processing.<n>These huge models are memory hungry and incur significant inference latency even on cutting edge AI-accelerators.<n>We propose LeanAttention, a scalable technique of computing self-attention for the token-generation phase.
arXiv Detail & Related papers (2024-05-17T00:52:39Z) - Repeat After Me: Transformers are Better than State Space Models at Copying [53.47717661441142]
We show that while generalized state space models are promising in terms of inference-time efficiency, they are limited compared to transformer models on tasks that require copying from the input context.
arXiv Detail & Related papers (2024-02-01T21:44:11Z) - Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors [44.5740422079]
We show that pretraining with standard denoising objectives leads to dramatic gains across multiple architectures.
In stark contrast to prior works, we find vanilla Transformers to match the performance of S4 on Long Range Arena when properly pretrained.
arXiv Detail & Related papers (2023-10-04T17:17:06Z) - Efficient Long Sequence Modeling via State Space Augmented Transformer [92.74707853711374]
We propose SPADE, short for $underlinetextbfS$tate sunderlinetextbfP$ace.
We augment a SSM into the bottom layer of SPADE, and we employ efficient local attention methods for the other layers.
Experimental results on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-15T20:51:27Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
Deep neural network (DNN) latency characterization is a time-consuming process.
We propose MAPLE-X which extends MAPLE by incorporating explicit prior knowledge of hardware devices and DNN architecture latency.
arXiv Detail & Related papers (2022-05-25T11:08:20Z) - Long-Short Transformer: Efficient Transformers for Language and Vision [97.2850205384295]
Long-Short Transformer (Transformer-LS) is an efficient self-attention mechanism for modeling long sequences with linear complexity for both language and vision tasks.
It aggregates a novel long-range attention with dynamic projection to model distant correlations and a short-term attention to capture fine-grained local correlations.
Our method outperforms the state-of-the-art models on multiple tasks in language and vision domains, including the Long Range Arena benchmark, autoregressive language modeling, and ImageNet classification.
arXiv Detail & Related papers (2021-07-05T18:00:14Z) - Long Range Arena: A Benchmark for Efficient Transformers [115.1654897514089]
Long-rangearena benchmark is a suite of tasks consisting of sequences ranging from $1K$ to $16K$ tokens.
We systematically evaluate ten well-established long-range Transformer models on our newly proposed benchmark suite.
arXiv Detail & Related papers (2020-11-08T15:53:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.