論文の概要: City-VLM: Towards Multidomain Perception Scene Understanding via Multimodal Incomplete Learning
- arxiv url: http://arxiv.org/abs/2507.12795v1
- Date: Thu, 17 Jul 2025 05:21:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.347201
- Title: City-VLM: Towards Multidomain Perception Scene Understanding via Multimodal Incomplete Learning
- Title(参考訳): City-VLM:マルチモーダル不完全学習によるマルチドメイン知覚シーン理解を目指して
- Authors: Penglei Sun, Yaoxian Song, Xiangru Zhu, Xiang Liu, Qiang Wang, Yue Liu, Changqun Xia, Tiefeng Li, Yang Yang, Xiaowen Chu,
- Abstract要約: 我々は、textbfunderlineSVM-City という、最初のマルチドメイン認識屋外シーン理解データセットを構築した。
420ドル(約4万2000円)の画像と811ドル(約4万2000円)のポイントクラウドと567ドル(約5万5000円)の質問応答ペア、低高度ドローン、高高度航空機、衛星が含まれています。
実験結果から,City-VLM は既存の LVLM を平均して18.14 % のパフォーマンスを達成した。
- 参考スコア(独自算出の注目度): 18.827215649935468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scene understanding enables intelligent agents to interpret and comprehend their environment. While existing large vision-language models (LVLMs) for scene understanding have primarily focused on indoor household tasks, they face two significant limitations when applied to outdoor large-scale scene understanding. First, outdoor scenarios typically encompass larger-scale environments observed through various sensors from multiple viewpoints (e.g., bird view and terrestrial view), while existing indoor LVLMs mainly analyze single visual modalities within building-scale contexts from humanoid viewpoints. Second, existing LVLMs suffer from missing multidomain perception outdoor data and struggle to effectively integrate 2D and 3D visual information. To address the aforementioned limitations, we build the first multidomain perception outdoor scene understanding dataset, named \textbf{\underline{SVM-City}}, deriving from multi\textbf{\underline{S}}cale scenarios with multi\textbf{\underline{V}}iew and multi\textbf{\underline{M}}odal instruction tuning data. It contains $420$k images and $4, 811$M point clouds with $567$k question-answering pairs from vehicles, low-altitude drones, high-altitude aerial planes, and satellite. To effectively fuse the multimodal data in the absence of one modality, we introduce incomplete multimodal learning to model outdoor scene understanding and design the LVLM named \textbf{\underline{City-VLM}}. Multimodal fusion is realized by constructing a joint probabilistic distribution space rather than implementing directly explicit fusion operations (e.g., concatenation). Experimental results on three typical outdoor scene understanding tasks show City-VLM achieves $18.14 \%$ performance surpassing existing LVLMs in question-answering tasks averagely. Our method demonstrates pragmatic and generalization performance across multiple outdoor scenes.
- Abstract(参考訳): シーン理解により、知的エージェントは環境を解釈し理解することができる。
シーン理解のための既存の大規模視覚言語モデル(LVLM)は主に家庭内タスクに焦点を当てているが、屋外の大規模シーン理解には2つの大きな制限がある。
まず、屋外のシナリオは、複数の視点から様々なセンサーを通して観測される大規模環境(例えば、鳥の視界と地上の視界)を包含するのに対し、既存の屋内LVLMは、主にヒューマノイドの観点から、ビルスケールのコンテキスト内の単一の視覚的モーダルを解析する。
第二に、既存のLVLMは、マルチドメイン認識屋外データの欠如に悩まされ、2Dと3Dの視覚情報を効果的に統合するのに苦労する。
上記の制約に対処するため、我々は、 Multi\textbf{\underline{SVM-City}} と multi\textbf{\underline{V}}iew と multi\textbf{\underline{M}}odal 命令チューニングデータを用いた multi\textbf{\underline{S}}cale シナリオから派生した、最初のマルチドメイン認識屋外シーン理解データセットを構築した。
420ドル(約4万2000円)の画像と811ドル(約4万2000円)のポイントクラウドと567ドル(約5万5000円)の質問応答ペア、低高度ドローン、高高度航空機、衛星が含まれています。
1つのモダリティがない場合のマルチモーダルデータを効果的に融合するために、屋外シーンの理解とLVLMの設計をモデル化するために不完全なマルチモーダル学習を導入する。
多モード融合は、直接的明示的な融合操作(例えば連結)を実装するのではなく、連立確率分布空間を構築することで実現される。
3つの典型的な屋外シーン理解タスクに関する実験結果から,市町村が既存のLVLMを平均して18.14ドル以上の性能を達成していることが明らかとなった。
提案手法は,複数の屋外シーンにまたがって実用的,一般化的な性能を示す。
関連論文リスト
- Extending Large Vision-Language Model for Diverse Interactive Tasks in Autonomous Driving [45.82124136705798]
DriveMonkeyは、大きなビジュアル言語モデルと空間プロセッサをシームレスに統合するフレームワークである。
我々の実験によると、DriveMonkeyは一般的なLVLMよりも優れており、特に3D視覚グラウンドタスクにおいて9.86%の顕著な改善が達成されている。
論文 参考訳(メタデータ) (2025-05-13T16:36:51Z) - MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs [13.678235444299286]
MLLM(Multimodal large language model)は、2次元の視覚的理解に優れるが、3次元空間を推論する能力には限界がある。
本研究では,1)新しい教師付き微調整データセットの導入,2)屋内シーンに焦点を当てた新しい評価ベンチマークを導入するために,オープンセットアノテーションを用いた大規模高品質3Dシーンデータを活用する。
論文 参考訳(メタデータ) (2025-03-17T12:34:22Z) - NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models [11.184459657989914]
シーン理解のためのマルチビュー・マルチモーダル評価ベンチマークであるNuPlanQA-Evalを紹介する。
また,NuPlanQA-1Mは,実世界の視覚的質問応答(VQA)ペア100万個からなる大規模データセットである。
評価の結果,エゴ中心の視点から,既存のMLLMがシーン特有の知覚と空間的推論を駆動する上で直面する重要な課題が明らかになった。
論文 参考訳(メタデータ) (2025-03-17T03:12:39Z) - Enhanced Multimodal RAG-LLM for Accurate Visual Question Answering [10.505845766495128]
MLLM(Multimodal large language model)は、視覚とテキストのモダリティの統合において大きな進歩を遂げた。
マルチモーダル検索拡張生成(RAG)に基づく新しいフレームワークを提案する。
RAGは、画像内のオブジェクト認識、関係識別、空間的理解を強化するために構造化されたシーングラフを導入している。
論文 参考訳(メタデータ) (2024-12-30T13:16:08Z) - CoF: Coarse to Fine-Grained Image Understanding for Multi-modal Large Language Models [16.91226496250909]
マルチモーダルな理解は、粗いものから細かいものへと、2つの段階に分けられる。
第1段階では,MLLMに回答のほぼ面積を特定するよう促す。
第2段階では、視覚的なプロンプトエンジニアリングにより、関連する領域に対するモデルの焦点をさらに強化する。
論文 参考訳(メタデータ) (2024-12-22T05:42:40Z) - TWIST & SCOUT: Grounding Multimodal LLM-Experts by Forget-Free Tuning [54.033346088090674]
TWIST と SCOUT は,事前学習したMLLM に視覚的接地能力を持たせるフレームワークである。
モデルを効果的に微調整するために,SCOUTと呼ばれる高品質な合成データセットを生成する。
このデータセットは、ステップバイステップのマルチモーダル推論プロセスを記述する、豊富な監視信号を提供する。
論文 参考訳(メタデータ) (2024-10-14T13:35:47Z) - DivScene: Benchmarking LVLMs for Object Navigation with Diverse Scenes and Objects [84.73092715537364]
本稿では,多数のシーンタイプにおいて,多様な対象物にナビゲートする新たな課題について検討する。
我々は、模倣学習によりLVLM(Large Vision Language Model)を微調整することにより、エンドツーエンドのエンボディエージェントであるNatVLMを構築した。
我々のエージェントは、GPT-4oを超える成功率を20%以上達成する。
論文 参考訳(メタデータ) (2024-10-03T17:49:28Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs [101.50522135049198]
BuboGPTはマルチモーダルなLLMで、視覚、音声、言語間の相互対話を行うことができる。
1)文中のエンティティを抽出し、画像中の対応するマスクを見つけるSAMに基づく、市販のビジュアルグラウンドモジュール。
実験の結果,BuboGPTは人間との相互作用において,印象的なマルチモーダル理解と視覚的接地能力を実現することがわかった。
論文 参考訳(メタデータ) (2023-07-17T15:51:47Z) - VELMA: Verbalization Embodiment of LLM Agents for Vision and Language
Navigation in Street View [81.58612867186633]
視覚と言語ナビゲーション(VLN)は、視覚的および自然言語の理解と空間的および時間的推論能力を必要とする。
VELMAは,2つのコンテキスト内例のみを用いて,ストリートビューでのナビゲーション指示に従うことができることを示す。
数千の例でLLMエージェントをさらに微調整し、従来の2つのデータセットのタスク完了に対する25%-30%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2023-07-12T11:08:24Z) - LVLM-eHub: A Comprehensive Evaluation Benchmark for Large
Vision-Language Models [55.304181390027274]
本稿では,LVLM評価ハブ(LVLM-eHub)の構築により,一般公開された大規模マルチモーダルモデルの包括的評価を行う。
我々のLVLM-eHubは、InstructBLIPやMiniGPT-4などの代表的LVLMから成り、定量的能力評価とオンラインアリーナプラットフォームによって徹底的に評価されている。
この研究は、いくつかの革新的な発見を明らかにしている。まず、インストラクタBLIPのような膨大なドメイン内データを持つ命令調整型LVLMは、多くの既存のタスクを過度にオーバーフィットさせ、オープンワールドのシナリオでは一般化が不十分である。
論文 参考訳(メタデータ) (2023-06-15T16:39:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。