RONOM: Reduced-Order Neural Operator Modeling
- URL: http://arxiv.org/abs/2507.12814v1
- Date: Thu, 17 Jul 2025 06:14:19 GMT
- Title: RONOM: Reduced-Order Neural Operator Modeling
- Authors: Sven Dummer, Dongwei Ye, Christoph Brune,
- Abstract summary: This work introduces the reduced-order neural operator modeling (RONOM) framework, which bridges concepts from ROM and operator learning.<n>We establish a discretization error bound analogous to those in ROM, and get insights into RONOM's discretization convergence and discretization robustness.
- Score: 1.2016264781280588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-dependent partial differential equations are ubiquitous in physics-based modeling, but they remain computationally intensive in many-query scenarios, such as real-time forecasting, optimal control, and uncertainty quantification. Reduced-order modeling (ROM) addresses these challenges by constructing a low-dimensional surrogate model but relies on a fixed discretization, which limits flexibility across varying meshes during evaluation. Operator learning approaches, such as neural operators, offer an alternative by parameterizing mappings between infinite-dimensional function spaces, enabling adaptation to data across different resolutions. Whereas ROM provides rigorous numerical error estimates, neural operator learning largely focuses on discretization convergence and invariance without quantifying the error between the infinite-dimensional and the discretized operators. This work introduces the reduced-order neural operator modeling (RONOM) framework, which bridges concepts from ROM and operator learning. We establish a discretization error bound analogous to those in ROM, and get insights into RONOM's discretization convergence and discretization robustness. Moreover, two numerical examples are presented that compare RONOM to existing neural operators for solving partial differential equations. The results demonstrate that RONOM using standard vector-to-vector neural networks achieves comparable performance in input generalization and superior performance in both spatial super-resolution and discretization robustness, while also offering novel insights into temporal super-resolution scenarios.
Related papers
- PMNO: A novel physics guided multi-step neural operator predictor for partial differential equations [23.04840527974364]
We propose a novel physics guided multi-step neural operator (PMNO) architecture to address challenges in long-horizon prediction of complex physical systems.<n>The PMNO framework replaces the single-step input with multi-step historical data in the forward pass and introduces an implicit time-stepping scheme during backpropagation.<n>We demonstrate the superior predictive performance of PMNO predictor across a diverse range of physical systems.
arXiv Detail & Related papers (2025-06-02T12:33:50Z) - A Data-Driven Framework for Discovering Fractional Differential Equations in Complex Systems [8.206685537936078]
This study introduces a stepwise data-driven framework for discovering fractional differential equations (FDEs) directly from data.<n>Our framework applies deep neural networks as surrogate models for denoising and reconstructing sparse and noisy observations.<n>We validate the framework across various datasets, including synthetic anomalous diffusion data and experimental data on the creep behavior of frozen soils.
arXiv Detail & Related papers (2024-12-05T08:38:30Z) - Designing DNNs for a trade-off between robustness and processing performance in embedded devices [1.474723404975345]
Machine learning-based embedded systems need to be robust against soft errors.<n>This paper investigates the suitability of using bounded AFs to improve model robustness against perturbations.<n>We analyze encoder-decoder fully convolutional models aimed at performing semantic segmentation tasks on hyperspectral images for scene understanding in autonomous driving.
arXiv Detail & Related papers (2024-12-04T19:34:33Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
We develop a novel contrastive pretraining framework that improves neural operator generalization across multiple governing equations simultaneously.
A combination of physics-informed system evolution and latent-space model output are anchored to input data and used in our distance function.
We find that physics-informed contrastive pretraining improves accuracy for the Fourier Neural Operator in fixed-future and autoregressive rollout tasks for the 1D and 2D Heat, Burgers', and linear advection equations.
arXiv Detail & Related papers (2024-01-29T17:32:22Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
We introduce a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization.
MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena.
We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression.
arXiv Detail & Related papers (2023-09-29T20:18:52Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
arXiv Detail & Related papers (2023-01-15T21:57:43Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.