MCoT-RE: Multi-Faceted Chain-of-Thought and Re-Ranking for Training-Free Zero-Shot Composed Image Retrieval
- URL: http://arxiv.org/abs/2507.12819v1
- Date: Thu, 17 Jul 2025 06:22:49 GMT
- Title: MCoT-RE: Multi-Faceted Chain-of-Thought and Re-Ranking for Training-Free Zero-Shot Composed Image Retrieval
- Authors: Jeong-Woo Park, Seong-Whan Lee,
- Abstract summary: Composed Image Retrieval (CIR) is the task of retrieving a target image from a gallery using a reference image and a modification text.<n>We propose Chain-of-Thought with re-ranking (MCoT-RE) as a training-free zero-shot CIR framework.
- Score: 32.33545237942899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Composed Image Retrieval (CIR) is the task of retrieving a target image from a gallery using a composed query consisting of a reference image and a modification text. Among various CIR approaches, training-free zero-shot methods based on pre-trained models are cost-effective but still face notable limitations. For example, sequential VLM-LLM pipelines process each modality independently, which often results in information loss and limits cross-modal interaction. In contrast, methods based on multimodal large language models (MLLMs) often focus exclusively on applying changes indicated by the text, without fully utilizing the contextual visual information from the reference image. To address these issues, we propose multi-faceted Chain-of-Thought with re-ranking (MCoT-RE), a training-free zero-shot CIR framework. MCoT-RE utilizes multi-faceted Chain-of-Thought to guide the MLLM to balance explicit modifications and contextual visual cues, generating two distinct captions: one focused on modification and the other integrating comprehensive visual-textual context. The first caption is used to filter candidate images. Subsequently, we combine these two captions and the reference image to perform multi-grained re-ranking. This two-stage approach facilitates precise retrieval by aligning with the textual modification instructions while preserving the visual context of the reference image. Through extensive experiments, MCoT-RE achieves state-of-the-art results among training-free methods, yielding improvements of up to 6.24% in Recall@10 on FashionIQ and 8.58% in Recall@1 on CIRR.
Related papers
- Multimodal Reasoning Agent for Zero-Shot Composed Image Retrieval [52.709090256954276]
Zero-Shot Composed Image Retrieval (ZS-CIR) aims to retrieve target images given a compositional query.<n>We propose a novel framework by employing a Multimodal Reasoning Agent (MRA) for ZS-CIR.
arXiv Detail & Related papers (2025-05-26T13:17:50Z) - MLLM-Guided VLM Fine-Tuning with Joint Inference for Zero-Shot Composed Image Retrieval [50.062817677022586]
Zero-Shot Image Retrieval (ZS-CIR) methods typically train adapters that convert reference images into pseudo-text tokens.<n>We propose MLLM-Guided VLM Fine-Tuning with Joint Inference (MVFT-JI) to construct two complementary training tasks using only unlabeled images.
arXiv Detail & Related papers (2025-05-26T08:56:59Z) - CoLLM: A Large Language Model for Composed Image Retrieval [76.29725148964368]
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query.<n>We present CoLLM, a one-stop framework that generates triplets on-the-fly from image-caption pairs.<n>We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts.
arXiv Detail & Related papers (2025-03-25T17:59:50Z) - Data-Efficient Generalization for Zero-shot Composed Image Retrieval [67.46975191141928]
ZS-CIR aims to retrieve the target image based on a reference image and a text description without requiring in-distribution triplets for training.<n>One prevalent approach follows the vision-language pretraining paradigm that employs a mapping network to transfer the image embedding to a pseudo-word token in the text embedding space.<n>We propose a Data-efficient Generalization (DeG) framework, including two novel designs, namely, Textual Supplement (TS) module and Semantic-Set (S-Set)
arXiv Detail & Related papers (2025-03-07T07:49:31Z) - CoTMR: Chain-of-Thought Multi-Scale Reasoning for Training-Free Zero-Shot Composed Image Retrieval [13.59418209417664]
Zero-Shot Composed Image Retrieval (ZS-CIR) aims to retrieve target images by integrating information from a composed query without training samples.<n>We propose CoTMR, a training-free framework crafted for ZS-CIR with novel Chain-of-thought (CoT) and Multi-scale Reasoning.
arXiv Detail & Related papers (2025-02-28T08:12:23Z) - Reason-before-Retrieve: One-Stage Reflective Chain-of-Thoughts for Training-Free Zero-Shot Composed Image Retrieval [28.018754406453937]
Composed Image Retrieval (CIR) aims to retrieve target images that closely resemble a reference image.<n>We present One-Stage Reflective Chain-of-Thought Reasoning for ZS-CIR (OSrCIR)<n>OSrCIR achieves performance gains of 1.80% to 6.44% over existing training-free methods across multiple tasks.
arXiv Detail & Related papers (2024-12-15T06:22:20Z) - Compositional Image Retrieval via Instruction-Aware Contrastive Learning [40.54022628032561]
Composed Image Retrieval (CIR) involves retrieving a target image based on a composed query of an image paired with text that specifies modifications or changes to the visual reference.<n>In practice, due to the scarcity of annotated data in downstream tasks, Zero-Shot CIR (ZS-CIR) is desirable.<n>We propose a novel embedding method utilizing an instruction-tuned Multimodal LLM (MLLM) to generate composed representation.
arXiv Detail & Related papers (2024-12-07T22:46:52Z) - Training-free Zero-shot Composed Image Retrieval via Weighted Modality Fusion and Similarity [2.724141845301679]
Composed image retrieval (CIR) formulates the query as a combination of a reference image and modified text.
We introduce a training-free approach for ZS-CIR.
Our approach is simple, easy to implement, and its effectiveness is validated through experiments on the FashionIQ and CIRR datasets.
arXiv Detail & Related papers (2024-09-07T21:52:58Z) - Spherical Linear Interpolation and Text-Anchoring for Zero-shot Composed Image Retrieval [43.47770490199544]
Composed Image Retrieval (CIR) is a complex task that retrieves images using a query, which is configured with an image and a caption.
We introduce a novel ZS-CIR method that uses Spherical Linear Interpolation (Slerp) to directly merge image and text representations.
We also introduce Text-Anchored-Tuning (TAT), a method that fine-tunes the image encoder while keeping the text encoder fixed.
arXiv Detail & Related papers (2024-05-01T15:19:54Z) - Vision-by-Language for Training-Free Compositional Image Retrieval [78.60509831598745]
Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database.
Recent research sidesteps this need by using large-scale vision-language models (VLMs)
We propose to tackle CIR in a training-free manner via Vision-by-Language (CIReVL)
arXiv Detail & Related papers (2023-10-13T17:59:38Z) - Sentence-level Prompts Benefit Composed Image Retrieval [69.78119883060006]
Composed image retrieval (CIR) is the task of retrieving specific images by using a query that involves both a reference image and a relative caption.
We propose to leverage pretrained V-L models, e.g., BLIP-2, to generate sentence-level prompts.
Our proposed method performs favorably against the state-of-the-art CIR methods on the Fashion-IQ and CIRR datasets.
arXiv Detail & Related papers (2023-10-09T07:31:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.