Emotional Support with LLM-based Empathetic Dialogue Generation
- URL: http://arxiv.org/abs/2507.12820v1
- Date: Thu, 17 Jul 2025 06:24:20 GMT
- Title: Emotional Support with LLM-based Empathetic Dialogue Generation
- Authors: Shiquan Wang, Ruiyu Fang, Zhongjiang He, Shuangyong Song, Yongxiang Li,
- Abstract summary: This paper presents our solution for the NLPCC 2025 Task 8 ESC evaluation.<n>We leverage large-scale language models enhanced by prompt engineering and finetuning techniques.
- Score: 5.289702620838033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emotional Support Conversation (ESC) aims to provide empathetic and effective emotional assistance through dialogue, addressing the growing demand for mental health support. This paper presents our solution for the NLPCC 2025 Task 8 ESC evaluation, where we leverage large-scale language models enhanced by prompt engineering and finetuning techniques. We explore both parameter-efficient Low-Rank Adaptation and full-parameter fine-tuning strategies to improve the model's ability to generate supportive and contextually appropriate responses. Our best model ranked second in the competition, highlighting the potential of combining LLMs with effective adaptation methods for ESC tasks. Future work will focus on further enhancing emotional understanding and response personalization to build more practical and reliable emotional support systems.
Related papers
- IntentionESC: An Intention-Centered Framework for Enhancing Emotional Support in Dialogue Systems [74.0855067343594]
In emotional support conversations, unclear intentions can lead supporters to employ inappropriate strategies.<n>We propose the Intention-centered Emotional Support Conversation framework.<n>It defines the possible intentions of supporters, identifies key emotional state aspects for inferring these intentions, and maps them to appropriate support strategies.
arXiv Detail & Related papers (2025-06-06T10:14:49Z) - From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations [19.67703146838264]
Large Language Models (LLMs) have revolutionized the generation of emotional support conversations.<n>This paper explores the role of personas in the creation of emotional support conversations.
arXiv Detail & Related papers (2025-02-17T05:24:30Z) - FEEL: A Framework for Evaluating Emotional Support Capability with Large Language Models [14.894922829587841]
Emotional Support Conversation (ESC) is a typical dialogue that can effectively assist the user in mitigating emotional pressures.
Current non-artificial methodologies face challenges in effectively appraising the emotional support capability.
We propose a novel model FEEL, employing Large Language Models (LLMs) as evaluators to assess emotional support capabilities.
arXiv Detail & Related papers (2024-03-23T03:32:26Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
We propose K-ESConv, a novel prompt learning based knowledge injection method for emotional support dialogue system.
We evaluate our model on an emotional support dataset ESConv, where the model retrieves and incorporates knowledge from external professional emotional Q&A forum.
arXiv Detail & Related papers (2023-12-16T08:10:10Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
We introduce an innovative methodology that synthesizes human insights with the computational prowess of Large Language Models (LLMs)
By utilizing the in-context learning potential of ChatGPT, we generate an ExTensible Emotional Support dialogue dataset, named ExTES.
Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions.
arXiv Detail & Related papers (2023-08-17T10:49:18Z) - Facilitating Multi-turn Emotional Support Conversation with Positive
Emotion Elicitation: A Reinforcement Learning Approach [58.88422314998018]
Emotional support conversation (ESC) aims to provide emotional support (ES) to improve one's mental state.
Existing works stay at fitting grounded responses and responding strategies which ignore the effect on ES and lack explicit goals to guide emotional positive transition.
We introduce a new paradigm to formalize multi-turn ESC as a process of positive emotion elicitation.
arXiv Detail & Related papers (2023-07-16T09:58:44Z) - Improving Multi-turn Emotional Support Dialogue Generation with
Lookahead Strategy Planning [81.79431311952656]
We propose a novel system MultiESC to provide Emotional Support.
For strategy planning, we propose lookaheads to estimate the future user feedback after using particular strategies.
For user state modeling, MultiESC focuses on capturing users' subtle emotional expressions and understanding their emotion causes.
arXiv Detail & Related papers (2022-10-09T12:23:47Z) - Towards Emotional Support Dialog Systems [61.58828606097423]
We define the Emotional Support Conversation task and propose an ESC Framework, which is grounded on the Helping Skills Theory.
We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode.
We evaluate state-of-the-art dialog models with respect to the ability to provide emotional support.
arXiv Detail & Related papers (2021-06-02T13:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.