Learning to Reject Low-Quality Explanations via User Feedback
- URL: http://arxiv.org/abs/2507.12900v2
- Date: Fri, 18 Jul 2025 09:14:45 GMT
- Title: Learning to Reject Low-Quality Explanations via User Feedback
- Authors: Luca Stradiotti, Dario Pesenti, Stefano Teso, Jesse Davis,
- Abstract summary: We introduce ULER (User-centric Low-quality Explanation Rejector), which learns a simple rejector from human ratings and per-feature relevance judgments.<n>Our experiments show that ULER outperforms both state-of-the-art and explanation-aware learning to reject strategies at LtX.
- Score: 19.00554619010889
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning predictors are increasingly being employed in high-stakes applications such as credit scoring. Explanations help users unpack the reasons behind their predictions, but are not always "high quality''. That is, end-users may have difficulty interpreting or believing them, which can complicate trust assessment and downstream decision-making. We argue that classifiers should have the option to refuse handling inputs whose predictions cannot be explained properly and introduce a framework for learning to reject low-quality explanations (LtX) in which predictors are equipped with a rejector that evaluates the quality of explanations. In this problem setting, the key challenges are how to properly define and assess explanation quality and how to design a suitable rejector. Focusing on popular attribution techniques, we introduce ULER (User-centric Low-quality Explanation Rejector), which learns a simple rejector from human ratings and per-feature relevance judgments to mirror human judgments of explanation quality. Our experiments show that ULER outperforms both state-of-the-art and explanation-aware learning to reject strategies at LtX on eight classification and regression benchmarks and on a new human-annotated dataset, which we will publicly release to support future research.
Related papers
- Ranking Generated Answers: On the Agreement of Retrieval Models with Humans on Consumer Health Questions [25.158868133182025]
We present a method for evaluating the output of generative large language models (LLMs)<n>We use ranking models trained on annotated document collections as a substitute for explicit relevance.<n>In a user study, our method correlates with the preferences of a human expert.
arXiv Detail & Related papers (2024-08-19T09:27:45Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
Characterizing errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors.
We propose to discover those patterns of tokens that distinguish correct and erroneous predictions.
We show that our method, Premise, performs well in practice.
arXiv Detail & Related papers (2023-11-18T00:24:26Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.<n>XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.<n>Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - How (Not) To Evaluate Explanation Quality [29.40729766120284]
We formulate desired characteristics of explanation quality that apply across tasks and domains.
We propose actionable guidelines to overcome obstacles that limit today's evaluation of explanation quality.
arXiv Detail & Related papers (2022-10-13T16:06:59Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z) - Explaining reputation assessments [6.87724532311602]
We propose an approach to explain the rationale behind assessments from quantitative reputation models.
Our approach adapts, extends and combines existing approaches for explaining decisions made using multi-attribute decision models.
arXiv Detail & Related papers (2020-06-15T23:19:35Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
We establish a novel set of evaluation criteria for such feature based explanations by analysis.
We obtain new explanations that are loosely necessary and sufficient for a prediction.
We extend the explanation to extract the set of features that would move the current prediction to a target class.
arXiv Detail & Related papers (2020-05-31T05:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.