An ultra-low-power CGRA for accelerating Transformers at the edge
- URL: http://arxiv.org/abs/2507.12904v1
- Date: Thu, 17 Jul 2025 08:43:14 GMT
- Title: An ultra-low-power CGRA for accelerating Transformers at the edge
- Authors: Rohit Prasad,
- Abstract summary: This paper introduces an ultra-low-power, Coarse-Grained Reconfigurable Array (CGRA) architecture to accelerate General Matrix multiplication (GEMM) operations in transformer models.<n>The proposed architecture integrates a 4 x 4 array of Processing Elements (PEs) for efficient parallel computation and dedicated 4 x 2 Memory Operation Blocks (MOBs) for optimized LOAD/STORE operations.<n>A switchless mesh torus interconnect network further minimizes power and latency by enabling direct communication between PEs and MOBs.
- Score: 1.52292571922932
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transformers have revolutionized deep learning with applications in natural language processing, computer vision, and beyond. However, their computational demands make it challenging to deploy them on low-power edge devices. This paper introduces an ultra-low-power, Coarse-Grained Reconfigurable Array (CGRA) architecture specifically designed to accelerate General Matrix Multiplication (GEMM) operations in transformer models tailored for the energy and resource constraints of edge applications. The proposed architecture integrates a 4 x 4 array of Processing Elements (PEs) for efficient parallel computation and dedicated 4 x 2 Memory Operation Blocks (MOBs) for optimized LOAD/STORE operations, reducing memory bandwidth demands and enhancing data reuse. A switchless mesh torus interconnect network further minimizes power and latency by enabling direct communication between PEs and MOBs, eliminating the need for centralized switching. Through its heterogeneous array design and efficient dataflow, this CGRA architecture addresses the unique computational needs of transformers, offering a scalable pathway to deploy sophisticated machine learning models on edge devices.
Related papers
- BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN)<n>We propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations.<n>Our proposed algorithm achieves SOTA performance among binary ViT methods.
arXiv Detail & Related papers (2025-03-04T08:35:01Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - TrIM, Triangular Input Movement Systolic Array for Convolutional Neural Networks: Architecture and Hardware Implementation [0.0]
TrIM is an innovative dataflow based on a triangular movement of inputs.<n> TrIM can reduce the number of memory accesses by one order of magnitude when compared to state-of-the-art systolic arrays.<n> architecture achieves a peak throughput of 453.6 Giga Operations per Second.
arXiv Detail & Related papers (2024-08-05T10:18:00Z) - ARTEMIS: A Mixed Analog-Stochastic In-DRAM Accelerator for Transformer Neural Networks [2.9699290794642366]
ARTEMIS is a mixed analog-stochastic in-DRAM accelerator for transformer models.
Our analysis indicates that ARTEMIS exhibits at least 3.0x speedup, 1.8x lower energy, and 1.9x better energy efficiency compared to GPU, TPU, CPU, and state-of-the-art PIM transformer hardware accelerators.
arXiv Detail & Related papers (2024-07-17T15:08:14Z) - Accelerator-driven Data Arrangement to Minimize Transformers Run-time on
Multi-core Architectures [5.46396577345121]
complexity of transformer models in artificial intelligence expands their computational costs, memory usage, and energy consumption.
We propose a novel memory arrangement strategy, governed by the hardware accelerator's kernel size, which effectively minimizes off-chip data access.
Our approach can achieve up to a 2.8x speed increase when executing inferences employing state-of-the-art transformers.
arXiv Detail & Related papers (2023-12-20T13:01:25Z) - RACE-IT: A Reconfigurable Analog CAM-Crossbar Engine for In-Memory
Transformer Acceleration [21.196696191478885]
Transformer models represent the cutting edge of Deep Neural Networks (DNNs)
processing these models demands significant computational resources and results in a substantial memory footprint.
We introduce a novel Analog Content Addressable Memory (ACAM) structure capable of performing various non-MVM operations within Transformers.
arXiv Detail & Related papers (2023-11-29T22:45:39Z) - Containing Analog Data Deluge at Edge through Frequency-Domain
Compression in Collaborative Compute-in-Memory Networks [0.0]
This paper proposes a novel solution to improve area efficiency in deep learning inference tasks.
By processing analog data more efficiently, it is possible to selectively retain valuable data from sensors and alleviate the challenges posed by the analog data deluge.
arXiv Detail & Related papers (2023-09-20T03:52:04Z) - ADC/DAC-Free Analog Acceleration of Deep Neural Networks with Frequency
Transformation [2.7488316163114823]
This paper proposes a novel approach to an energy-efficient acceleration of frequency-domain neural networks by utilizing analog-domain frequency-based tensor transformations.
Our approach achieves more compact cells by eliminating the need for trainable parameters in the transformation matrix.
On a 16$times$16 crossbars, for 8-bit input processing, the proposed approach achieves the energy efficiency of 1602 tera operations per second per Watt.
arXiv Detail & Related papers (2023-09-04T19:19:39Z) - MB-TaylorFormer: Multi-branch Efficient Transformer Expanded by Taylor
Formula for Image Dehazing [88.61523825903998]
Transformer networks are beginning to replace pure convolutional neural networks (CNNs) in the field of computer vision.
We propose a new Transformer variant, which applies the Taylor expansion to approximate the softmax-attention and achieves linear computational complexity.
We introduce a multi-branch architecture with multi-scale patch embedding to the proposed Transformer, which embeds features by overlapping deformable convolution of different scales.
Our model, named Multi-branch Transformer expanded by Taylor formula (MB-TaylorFormer), can embed coarse to fine features more flexibly at the patch embedding stage and capture long-distance pixel interactions with limited computational cost
arXiv Detail & Related papers (2023-08-27T08:10:23Z) - Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-level Sparsity via Mixture-of-Experts [60.1586169973792]
M$3$ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE)
MoE achieves better accuracy and over 80% reduction computation but leaves challenges for efficient deployment on FPGA.
Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations.
arXiv Detail & Related papers (2023-05-30T02:24:03Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.