Accelerator-driven Data Arrangement to Minimize Transformers Run-time on
Multi-core Architectures
- URL: http://arxiv.org/abs/2312.13000v1
- Date: Wed, 20 Dec 2023 13:01:25 GMT
- Title: Accelerator-driven Data Arrangement to Minimize Transformers Run-time on
Multi-core Architectures
- Authors: Alireza Amirshahi, Giovanni Ansaloni, David Atienza
- Abstract summary: complexity of transformer models in artificial intelligence expands their computational costs, memory usage, and energy consumption.
We propose a novel memory arrangement strategy, governed by the hardware accelerator's kernel size, which effectively minimizes off-chip data access.
Our approach can achieve up to a 2.8x speed increase when executing inferences employing state-of-the-art transformers.
- Score: 5.46396577345121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity of transformer models in artificial intelligence
expands their computational costs, memory usage, and energy consumption.
Hardware acceleration tackles the ensuing challenges by designing processors
and accelerators tailored for transformer models, supporting their computation
hotspots with high efficiency. However, memory bandwidth can hinder
improvements in hardware accelerators. Against this backdrop, in this paper we
propose a novel memory arrangement strategy, governed by the hardware
accelerator's kernel size, which effectively minimizes off-chip data access.
This arrangement is particularly beneficial for end-to-end transformer model
inference, where most of the computation is based on general matrix
multiplication (GEMM) operations. Additionally, we address the overhead of
non-GEMM operations in transformer models within the scope of this memory data
arrangement. Our study explores the implementation and effectiveness of the
proposed accelerator-driven data arrangement approach in both single- and
multi-core systems. Our evaluation demonstrates that our approach can achieve
up to a 2.8x speed increase when executing inferences employing
state-of-the-art transformers.
Related papers
- Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - ARTEMIS: A Mixed Analog-Stochastic In-DRAM Accelerator for Transformer Neural Networks [2.9699290794642366]
ARTEMIS is a mixed analog-stochastic in-DRAM accelerator for transformer models.
Our analysis indicates that ARTEMIS exhibits at least 3.0x speedup, 1.8x lower energy, and 1.9x better energy efficiency compared to GPU, TPU, CPU, and state-of-the-art PIM transformer hardware accelerators.
arXiv Detail & Related papers (2024-07-17T15:08:14Z) - Co-Designing Binarized Transformer and Hardware Accelerator for Efficient End-to-End Edge Deployment [3.391499691517567]
Transformer models have revolutionized AI tasks, but their large size hinders real-world deployment on resource-constrained and latency-critical edge devices.
We propose a co-design method for efficient end-to-end edge deployment of Transformers from three aspects: algorithm, hardware, and joint optimization.
Experimental results show our co-design achieves up to 2.14-49.37x throughput gains and 3.72-88.53x better energy efficiency over state-of-the-art Transformer accelerators.
arXiv Detail & Related papers (2024-07-16T12:36:10Z) - RACE-IT: A Reconfigurable Analog CAM-Crossbar Engine for In-Memory
Transformer Acceleration [21.196696191478885]
Transformer models represent the cutting edge of Deep Neural Networks (DNNs)
processing these models demands significant computational resources and results in a substantial memory footprint.
We introduce a novel Analog Content Addressable Memory (ACAM) structure capable of performing various non-MVM operations within Transformers.
arXiv Detail & Related papers (2023-11-29T22:45:39Z) - MCUFormer: Deploying Vision Transformers on Microcontrollers with
Limited Memory [76.02294791513552]
We propose a hardware-algorithm co-optimizations method called MCUFormer to deploy vision transformers on microcontrollers with extremely limited memory.
Experimental results demonstrate that our MCUFormer achieves 73.62% top-1 accuracy on ImageNet for image classification with 320KB memory.
arXiv Detail & Related papers (2023-10-25T18:00:26Z) - Ring Attention with Blockwise Transformers for Near-Infinite Context [88.61687950039662]
We present a novel approach, Ring Attention with Blockwise Transformers (Ring Attention), which leverages blockwise computation of self-attention and feedforward to distribute long sequences across multiple devices.
Our approach enables training and inference of sequences that are up to device count times longer than those achievable by prior memory-efficient Transformers.
arXiv Detail & Related papers (2023-10-03T08:44:50Z) - TransCODE: Co-design of Transformers and Accelerators for Efficient
Training and Inference [6.0093441900032465]
We propose a framework that simulates transformer inference and training on a design space of accelerators.
We use this simulator in conjunction with the proposed co-design technique, called TransCODE, to obtain the best-performing models.
The obtained transformer-accelerator pair achieves 0.3% higher accuracy than the state-of-the-art pair.
arXiv Detail & Related papers (2023-03-27T02:45:18Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer
Compression [69.36555801766762]
We propose a hardware-aware tensor decomposition framework, dubbed HEAT, that enables efficient exploration of the exponential space of possible decompositions.
We experimentally show that our hardware-aware factorized BERT variants reduce the energy-delay product by 5.7x with less than 1.1% accuracy loss.
arXiv Detail & Related papers (2022-11-30T05:31:45Z) - An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse
Transformers [11.811907838840712]
We propose an algorithm-hardware co-optimized framework to flexibly and efficiently accelerate Transformers by utilizing general N:M sparsity patterns.
We present a flexible and efficient hardware architecture, namely STA, to achieve significant speedup when deploying N:M sparse Transformers.
Experimental results show that compared to other methods, N:M sparse Transformers, generated using IDP, achieves an average of 6.7% improvement on accuracy with high training efficiency.
arXiv Detail & Related papers (2022-08-12T04:51:49Z) - Augmented Shortcuts for Vision Transformers [49.70151144700589]
We study the relationship between shortcuts and feature diversity in vision transformer models.
We present an augmented shortcut scheme, which inserts additional paths with learnable parameters in parallel on the original shortcuts.
Experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-06-30T09:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.