論文の概要: Demographic-aware fine-grained classification of pediatric wrist fractures
- arxiv url: http://arxiv.org/abs/2507.12964v2
- Date: Fri, 18 Jul 2025 11:16:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 12:36:33.529276
- Title: Demographic-aware fine-grained classification of pediatric wrist fractures
- Title(参考訳): 小児手首骨折の詳細な分類
- Authors: Ammar Ahmed, Ali Shariq Imran, Zenun Kastrati, Sher Muhammad Daudpota,
- Abstract要約: 特に骨折症例の多数を占める小児では、手首の病理が頻繁に見られる。
コンピュータビジョンは、広範囲なデータセットの利用可能性に応じて、有望な道を示す。
極めて限られたデータセットを用いて手首の病態を認識するという課題に対処するために,多面的アプローチを採用する。
- 参考スコア(独自算出の注目度): 3.4384440967420185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wrist pathologies are frequently observed, particularly among children who constitute the majority of fracture cases. However, diagnosing these conditions is time-consuming and requires specialized expertise. Computer vision presents a promising avenue, contingent upon the availability of extensive datasets, a notable challenge in medical imaging. Therefore, reliance solely on one modality, such as images, proves inadequate, especially in an era of diverse and plentiful data types. In this study, we employ a multifaceted approach to address the challenge of recognizing wrist pathologies using an extremely limited dataset. Initially, we approach the problem as a fine-grained recognition task, aiming to identify subtle X-ray pathologies that conventional CNNs overlook. Secondly, we enhance network performance by fusing patient metadata with X-ray images. Thirdly, rather than pre-training on a coarse-grained dataset like ImageNet, we utilize weights trained on a fine-grained dataset. While metadata integration has been used in other medical domains, this is a novel application for wrist pathologies. Our results show that a fine-grained strategy and metadata integration improve diagnostic accuracy by 2% with a limited dataset and by over 10% with a larger fracture-focused dataset.
- Abstract(参考訳): 特に骨折症例の多数を占める小児では、手首の病理が頻繁に見られる。
しかし、これらの状態の診断には時間がかかり、専門的な専門知識が必要である。
コンピュータビジョンは、医療画像における顕著な課題である広範囲なデータセットの利用可能性に基づいて、有望な道を示す。
したがって、画像のような1つのモダリティにのみ依存することは、特に多様で豊富なデータ型の時代において、不適切なことを証明している。
本研究では,極めて限られたデータセットを用いて手首の病態を認識することの課題に対して,多面的アプローチを採用する。
当初我々は,従来のCNNが見落としている微妙なX線病理を識別することを目的とした,きめ細かな認識タスクとしてこの問題にアプローチした。
第2に,患者メタデータをX線画像と融合することにより,ネットワーク性能を向上させる。
第3に、ImageNetのような粗い粒度のデータセットで事前トレーニングするのではなく、きめ細かい粒度のデータセットでトレーニングされた重みを利用する。
メタデータの統合は他の医学領域で使われているが、これは手首の病理学の新しい応用である。
以上の結果から, 詳細な戦略とメタデータの統合により, 限られたデータセットで2%, より大きなフラクチャー中心のデータセットで10%以上の精度で診断精度が向上することが示唆された。
関連論文リスト
- Unsupervised Machine Learning for Osteoporosis Diagnosis Using Singh Index Clustering on Hip Radiographs [0.0]
Singh Index (SI) は単純で半定量的な骨粗しょう症の診断方法である。
本研究は, 機械学習アルゴリズムを用いて, ラジオグラフからのSI識別を自動化することを目的とする。
論文 参考訳(メタデータ) (2024-11-22T08:44:43Z) - Learning from the few: Fine-grained approach to pediatric wrist pathology recognition on a limited dataset [4.391219238034502]
悪性腫瘍,特に小児・青年に共通する骨折は重要な診断課題である。
近年の深部畳み込みニューラルネットワークの進歩は、外傷X線における病理検出の自動化を約束している。
従来の手作業による注釈は効果的だが、精巧で費用がかかり、専門的な専門知識を必要とする。
手動で介入することなく、X線における識別領域を自動的に識別することを目的とした、きめ細かいアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-24T10:14:52Z) - MedIAnomaly: A comparative study of anomaly detection in medical images [26.319602363581442]
異常検出(AD)は、期待される正常なパターンから逸脱する異常なサンプルを検出することを目的としている。
医学的ADのための多くの方法が出現したにもかかわらず、公平で包括的な評価が欠如しているため、明確な結論が得られなかった。
本稿では,この問題に対処するため,比較を統一したベンチマークを構築した。
論文 参考訳(メタデータ) (2024-04-06T06:18:11Z) - Is in-domain data beneficial in transfer learning for landmarks
detection in x-ray images? [1.5348047288817481]
本研究では,大規模な自然画像データセットのみに事前学習したモデルに対して,小さな領域内X線画像データセットを使用することで,ランドマーク検出の精度が向上するかどうかを検討する。
我々の結果は、ドメイン内ソースデータセットを使用することで、ImageNetのドメイン外事前トレーニングに関して、限界があるか、まったく利益が得られないことを示している。
以上の結果から,大規模なアノテートデータセットが得られない場合の医用画像におけるロバストなランドマーク検出システムの開発が示唆された。
論文 参考訳(メタデータ) (2024-03-03T10:35:00Z) - Rescuing referral failures during automated diagnosis of domain-shifted
medical images [17.349847762608086]
異なる人口層から取得した医療画像や、別の技術を用いて測定した場合、最先端の領域一般化アプローチでさえ、参照中に深刻な失敗を犯すことが示される。
我々は,これらの障害を解消し,大幅な性能向上を実現する,ロバストな一般化とポストホック参照アプローチの新たな組み合わせを評価する。
論文 参考訳(メタデータ) (2023-11-28T13:14:55Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
プルーニングは、ディープニューラルネットワークを圧縮し、全体的なパフォーマンスに大きな影響を及ぼすことなく、メモリ使用量と推論時間を短縮する強力なテクニックとして登場した。
この研究は、プルーニングがモデル行動に与える影響を理解するための第一歩である。
論文 参考訳(メタデータ) (2023-08-17T20:40:30Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
我々は、外部のCXRデータセットを組み込むことで、不完全なトレーニングデータにつながると論じ、課題を提起する。
本研究は,多ラベル病分類問題を重み付き独立二分課題として分類する。
我々のフレームワークは、ドメインとラベルの相違を同時にモデル化し、対処し、優れた知識マイニング能力を実現する。
論文 参考訳(メタデータ) (2020-06-06T06:48:40Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。