WaveletInception Networks for Drive-by Vibration-Based Infrastructure Health Monitoring
- URL: http://arxiv.org/abs/2507.12969v1
- Date: Thu, 17 Jul 2025 10:14:20 GMT
- Title: WaveletInception Networks for Drive-by Vibration-Based Infrastructure Health Monitoring
- Authors: Reza Riahi Samani, Alfredo Nunez, Bart De Schutter,
- Abstract summary: This paper presents a novel deep learning-based framework for infrastructure health monitoring using drive-by vibration response signals.<n>Recognizing the importance of spectral and temporal information, we introduce the WaveletInception-BiLSTM network.<n>A case study focusing on railway track stiffness estimation shows that the model significantly outperforms state-of-the-art methods in estimating railway ballast and railpad stiffness parameters.
- Score: 12.238448638194203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel deep learning-based framework for infrastructure health monitoring using drive-by vibration response signals. Recognizing the importance of spectral and temporal information, we introduce the WaveletInception-BiLSTM network. The WaveletInception feature extractor utilizes a Learnable Wavelet Packet Transform (LWPT) as the stem for extracting vibration signal features, incorporating spectral information in the early network layers. This is followed by 1D Inception networks that extract multi-scale, high-level features at deeper layers. The extracted vibration signal features are then integrated with operational conditions via a Long Short-term Memory (LSTM) layer. The resulting feature extraction network effectively analyzes drive-by vibration signals across various measurement speeds without preprocessing and uses LSTM to capture interrelated temporal dependencies among different modes of information and to create feature vectors for health condition estimation. The estimator head is designed with a sequential modeling architecture using bidirectional LSTM (BiLSTM) networks, capturing bi-directional temporal relationships from drive-by measurements. This architecture allows for a high-resolution, beam-level assessment of infrastructure health conditions. A case study focusing on railway track stiffness estimation with simulated drive-by vibration signals shows that the model significantly outperforms state-of-the-art methods in estimating railway ballast and railpad stiffness parameters. Results underscore the potential of this approach for accurate, localized, and fully automated drive-by infrastructure health monitoring.
Related papers
- Neuromorphic Wireless Split Computing with Resonate-and-Fire Neurons [69.73249913506042]
This paper investigates a wireless split computing architecture that employs resonate-and-fire (RF) neurons to process time-domain signals directly.<n>By resonating at tunable frequencies, RF neurons extract time-localized spectral features while maintaining low spiking activity.<n> Experimental results show that the proposed RF-SNN architecture achieves comparable accuracy to conventional LIF-SNNs and ANNs.
arXiv Detail & Related papers (2025-06-24T21:14:59Z) - Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity.<n> multimodal sensing-aided beam prediction has gained significant attention, using various sensing data to predict user locations or network conditions.<n>Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets.
arXiv Detail & Related papers (2025-04-07T15:38:25Z) - EvMic: Event-based Non-contact sound recovery from effective spatial-temporal modeling [69.96729022219117]
When sound waves hit an object, they induce vibrations that produce high-frequency and subtle visual changes.<n>Recent advances in event camera hardware show good potential for its application in visual sound recovery.<n>We propose a novel pipeline for non-contact sound recovery, fully utilizing spatial-temporal information from the event stream.
arXiv Detail & Related papers (2025-04-03T08:51:17Z) - Range and Angle Estimation with Spiking Neural Resonators for FMCW Radar [16.91912935835324]
Automotive radar systems face the challenge of managing high sampling rates and large data bandwidth.<n>Neuromorphic computing offers promising solutions because of its inherent energy efficiency and parallel processing capacity.<n>This research presents a novel spiking neuron model for signal processing of frequency-modulated continuous wave (FMCW) radars.
arXiv Detail & Related papers (2025-03-02T13:51:03Z) - A Bidirectional Long Short Term Memory Approach for Infrastructure Health Monitoring Using On-board Vibration Response [0.0]
This paper proposes a deep learning methodology to estimate infrastructure physical parameters, such as railway track stiffness, using drive-by vibration response signals.<n>The proposed methodology can accurately and automatically estimate railway track stiffness and identify local stiffness reductions in the presence of noise.
arXiv Detail & Related papers (2024-12-03T18:15:34Z) - Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid
CNN-RNN [0.0]
In recent years, there has been a growing trend towards the use of vibration signals in the field of bioengineering.
Footstep-induced vibrations are useful for analyzing the movement of biological systems such as the human body and animals.
In this paper, we propose a novel ensemble model that leverages both the ensemble of multiple signals and of recurrent and convolutional neural network predictions.
arXiv Detail & Related papers (2023-03-11T00:49:45Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - A Novel Approach For Analysis of Distributed Acoustic Sensing System
Based on Deep Transfer Learning [0.0]
Convolutional neural networks are highly capable tools for extracting spatial information.
Long-short term memory (LSTM) is an effective instrument for processing sequential data.
VGG-16 architecture in our framework manages to obtain 100% classification accuracy in 50 trainings.
arXiv Detail & Related papers (2022-06-24T19:56:01Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
Impulse response estimation in high noise and in-the-wild settings is a challenging problem.
We propose a novel framework for parameterizing and estimating impulse responses based on recent advances in neural representation learning.
arXiv Detail & Related papers (2022-02-07T18:57:23Z) - Network Level Spatial Temporal Traffic State Forecasting with Hierarchical-Attention-LSTM (HierAttnLSTM) [0.0]
This paper leverages diverse traffic state datasets from the Caltrans Performance Measurement System (PeMS) hosted on the open benchmark.<n>We integrate cell and hidden states from low-level to high-level Long Short-Term Memory (LSTM) networks with an attention pooling mechanism.<n>The developed hierarchical structure is designed to account for dependencies across different time scales, capturing the spatial-temporal correlations of network-level traffic states.
arXiv Detail & Related papers (2022-01-15T05:25:03Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.