論文の概要: MUPAX: Multidimensional Problem Agnostic eXplainable AI
- arxiv url: http://arxiv.org/abs/2507.13090v1
- Date: Thu, 17 Jul 2025 12:59:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.503056
- Title: MUPAX: Multidimensional Problem Agnostic eXplainable AI
- Title(参考訳): MUPAX:多次元問題非依存eXplainable AI
- Authors: Vincenzo Dentamaro, Felice Franchini, Giuseppe Pirlo, Irina Voiculescu,
- Abstract要約: MUPAXは決定論的モデル説明可能性技術であり、収束性を保証する。
我々はMUPAXを様々なデータモダリティとタスクで評価する。
- 参考スコア(独自算出の注目度): 7.10598685240178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robust XAI techniques should ideally be simultaneously deterministic, model agnostic, and guaranteed to converge. We propose MULTIDIMENSIONAL PROBLEM AGNOSTIC EXPLAINABLE AI (MUPAX), a deterministic, model agnostic explainability technique, with guaranteed convergency. MUPAX measure theoretic formulation gives principled feature importance attribution through structured perturbation analysis that discovers inherent input patterns and eliminates spurious relationships. We evaluate MUPAX on an extensive range of data modalities and tasks: audio classification (1D), image classification (2D), volumetric medical image analysis (3D), and anatomical landmark detection, demonstrating dimension agnostic effectiveness. The rigorous convergence guarantees extend to any loss function and arbitrary dimensions, making MUPAX applicable to virtually any problem context for AI. By contrast with other XAI methods that typically decrease performance when masking, MUPAX not only preserves but actually enhances model accuracy by capturing only the most important patterns of the original data. Extensive benchmarking against the state of the XAI art demonstrates MUPAX ability to generate precise, consistent and understandable explanations, a crucial step towards explainable and trustworthy AI systems. The source code will be released upon publication.
- Abstract(参考訳): ロバストXAI技術は、理想的には同時に決定論的であり、モデル非依存であり、収束することを保証すべきである。
本稿では,決定論的,モデルに依存しない説明可能性技術であるMulti-DIMENSIONAL PROBLEM AGNOSTIC EXPLAINABLE AI(MUPAX)を提案する。
MUPAX測度理論の定式化は、構造的摂動解析を通じて、固有の入力パターンを発見し、急激な関係を排除し、原則的な特徴重要性の帰属を与える。
MUPAXは音声分類(1D)、画像分類(2D)、体積医学的画像分析(3D)、解剖学的ランドマーク検出(3D)、次元非依存の有効性を示す。
厳密な収束は任意の損失関数と任意の次元に拡張することを保証するため、MUPAXはAIの事実上のあらゆる問題コンテキストに適用できる。
マスク時の性能を通常低下させる他のXAI手法とは対照的に、MUPAXは保存するだけでなく、元のデータの最も重要なパターンのみをキャプチャすることで、モデル精度を実際に向上する。
XAIの最先端に対する大規模なベンチマークは、MUPAXが正確で一貫性があり、理解可能な説明を生成する能力を示している。
ソースコードは公開時に公開される。
関連論文リスト
- ForenX: Towards Explainable AI-Generated Image Detection with Multimodal Large Language Models [82.04858317800097]
ForenXは画像の真正性を識別するだけでなく、人間の思考に共鳴する説明を提供する新しい手法である。
ForenXは、強力なマルチモーダル大言語モデル(MLLM)を使用して、法医学的な手がかりを分析し、解釈する。
本稿では,AI生成画像における偽証拠の記述専用のデータセットであるForgReasonを紹介する。
論文 参考訳(メタデータ) (2025-08-02T15:21:26Z) - DAVID-XR1: Detecting AI-Generated Videos with Explainable Reasoning [58.70446237944036]
DAVID-Xは、AI生成ビデオに詳細な欠陥レベル、時間空間アノテーションと有理書を組み合わせた最初のデータセットである。
DAVID-XR1は、視覚的推論の解釈可能な連鎖を提供するために設計されたビデオ言語モデルである。
以上の結果から,AI生成ビデオコンテンツの信頼性確認のための説明可能な検出手法が期待できることを示す。
論文 参考訳(メタデータ) (2025-06-13T13:39:53Z) - PXGen: A Post-hoc Explainable Method for Generative Models [0.5266869303483376]
生成型AI(XAI)は、生成型AI技術の責任ある開発と展開を保証する上で重要な役割を果たす。
近年の研究では、有能なXAI手法は、主に2つの重要な領域に焦点を当てた一連の基準に従うべきであることが強調されている。
生成モデルのためのポストホックな説明可能な手法であるPXGenを提案する。
論文 参考訳(メタデータ) (2025-01-21T02:10:50Z) - Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection [58.87142367781417]
航法的に訓練された検出器は、限定的で単調な偽のパターンに過度に適合する傾向にあり、特徴空間は高度に制約され、低ランクになる。
潜在的な治療法の1つは、ビジョンファウンデーションモデルに事前訓練された知識を取り入れて、機能領域を広げることである。
主要なコンポーネントを凍結し、残ったコンポーネントのみを適用することで、フェイクパターンを学習しながら、トレーニング済みの知識を保存します。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Explainable AI needs formal notions of explanation correctness [2.1309989863595677]
医学のような重要な分野における機械学習はリスクをもたらし、規制を必要とする。
1つの要件は、リスクの高いアプリケーションにおけるMLシステムの決定は、人間に理解可能なものであるべきです。
現在の形式では、XAIはMLの品質管理に不適であり、それ自体は精査が必要である。
論文 参考訳(メタデータ) (2024-09-22T20:47:04Z) - Overlap Number of Balls Model-Agnostic CounterFactuals (ONB-MACF): A Data-Morphology-based Counterfactual Generation Method for Trustworthy Artificial Intelligence [15.415120542032547]
XAIはAIシステムをより理解しやすく信頼性の高いものにしようとしている。
本研究は,データ形態学戦略の価値を解析し,反実的説明を生成する。
ボールのオーバーラップ数(Overlap Number of Balls Model-Agnostic CounterFactuals,ONB-MACF)法を導入している。
論文 参考訳(メタデータ) (2024-05-20T18:51:42Z) - Theoretical Behavior of XAI Methods in the Presence of Suppressor
Variables [0.8602553195689513]
近年,「説明可能な人工知能(XAI)」のコミュニティは,モデル「複雑性」と「解釈可能性」のギャップを埋めるための膨大な手法を生み出している。
本研究のアプローチの大部分は, 相関雑音の存在下での非クラス関連抑制機能に非ゼロの重要性が寄与すると考えられる。
論文 参考訳(メタデータ) (2023-06-02T11:41:19Z) - Semantic Image Attack for Visual Model Diagnosis [80.36063332820568]
実際には、特定の列車およびテストデータセットに関する計量分析は、信頼性や公正なMLモデルを保証しない。
本稿では,セマンティック・イメージ・アタック(SIA)を提案する。
論文 参考訳(メタデータ) (2023-03-23T03:13:04Z) - Optimizing Explanations by Network Canonization and Hyperparameter
Search [74.76732413972005]
ルールベースで修正されたバックプロパゲーションXAIアプローチは、モダンなモデルアーキテクチャに適用される場合、しばしば課題に直面します。
モデルカノン化は、基礎となる機能を変更することなく問題のあるコンポーネントを無視してモデルを再構成するプロセスである。
本研究では、一般的なディープニューラルネットワークアーキテクチャに適用可能な、現在関連するモデルブロックのカノン化を提案する。
論文 参考訳(メタデータ) (2022-11-30T17:17:55Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - A Comparative Approach to Explainable Artificial Intelligence Methods in
Application to High-Dimensional Electronic Health Records: Examining the
Usability of XAI [0.0]
XAIは、コミュニケーション手段によって人間に達成される信頼の実証的要因を生み出すことを目的としている。
機械を信頼して人間の生き方に向くというイデオロギーは倫理的な混乱を引き起こします。
XAIメソッドは、ローカルレベルとグローバルレベルの両方で出力される特定のモデルに対する機能貢献を視覚化します。
論文 参考訳(メタデータ) (2021-03-08T18:15:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。