A Conceptual Framework for Requirements Engineering of Pretrained-Model-Enabled Systems
- URL: http://arxiv.org/abs/2507.13095v1
- Date: Thu, 17 Jul 2025 13:06:25 GMT
- Title: A Conceptual Framework for Requirements Engineering of Pretrained-Model-Enabled Systems
- Authors: Dongming Jin, Zhi Jin, Linyu Li, Xiaohong Chen,
- Abstract summary: We propose a conceptual framework tailored to requirements engineering of pretrained-model-enabled software systems.<n>This vision helps provide a guide for researchers and practitioners to tackle the emerging challenges in requirements engineering of pretrained-model-enabled systems.
- Score: 17.364803079763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large pretrained models have led to their widespread integration as core components in modern software systems. The trend is expected to continue in the foreseeable future. Unlike traditional software systems governed by deterministic logic, systems powered by pretrained models exhibit distinctive and emergent characteristics, such as ambiguous capability boundaries, context-dependent behavior, and continuous evolution. These properties fundamentally challenge long-standing assumptions in requirements engineering, including functional decomposability and behavioral predictability. This paper investigates this problem and advocates for a rethinking of existing requirements engineering methodologies. We propose a conceptual framework tailored to requirements engineering of pretrained-model-enabled software systems and outline several promising research directions within this framework. This vision helps provide a guide for researchers and practitioners to tackle the emerging challenges in requirements engineering of pretrained-model-enabled systems.
Related papers
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
We introduce neural network reprogrammability as a unifying framework for model adaptation.<n>We present a taxonomy that categorizes such information manipulation approaches across four key dimensions.<n>We also analyze remaining technical challenges and ethical considerations.
arXiv Detail & Related papers (2025-06-05T05:42:27Z) - SENAI: Towards Software Engineering Native Generative Artificial Intelligence [3.915435754274075]
This paper argues for the integration of Software Engineering knowledge into Large Language Models.<n>The aim is to propose a new direction where LLMs can move beyond mere functional accuracy to perform generative tasks.<n>Software engineering native generative models will not only overcome the shortcomings present in current models but also pave the way for the next generation of generative models capable of handling real-world software engineering.
arXiv Detail & Related papers (2025-03-19T15:02:07Z) - Search, Verify and Feedback: Towards Next Generation Post-training Paradigm of Foundation Models via Verifier Engineering [51.31836988300326]
Verifier engineering is a novel post-training paradigm specifically designed for the era of foundation models.
We systematically categorize the verifier engineering process into three essential stages: search, verify, and feedback.
arXiv Detail & Related papers (2024-11-18T12:04:52Z) - Abstraction Engineering [6.091612632147657]
Abstraction is already used across many disciplines involved in software development.
This paper looks at these new challenges and proposes to address them through the lens of Abstraction.
We discuss the foundations of Abstraction Engineering, identify key challenges, highlight the research questions that help address these challenges, and create a roadmap for future research.
arXiv Detail & Related papers (2024-08-26T07:56:32Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
We present a general framework for continual learning of sequentially arrived tasks with the use of pre-training.
We decompose its objective into three hierarchical components, including within-task prediction, task-identity inference, and task-adaptive prediction.
We propose an innovative approach to explicitly optimize these components with parameter-efficient fine-tuning (PEFT) techniques and representation statistics.
arXiv Detail & Related papers (2023-10-21T02:03:38Z) - Circular Systems Engineering [0.40964539027092917]
We introduce the concept of circular systems engineering, a novel paradigm for systems sustainability.
We define two principles to successfully implement it: end-to-end sustainability and bipartite sustainability.
We outline typical organizational evolution patterns that lead to the implementation and adoption of circularity principles.
arXiv Detail & Related papers (2023-06-30T17:09:44Z) - Methodology for Holistic Reference Modeling in Systems Engineering [0.0]
This paper presents a holistic approach to describe reference models across different views and levels.
Benefits include an end-to-end traceability of the capability coverage with performance parameters considered already at the starting point of the reference design.
arXiv Detail & Related papers (2022-11-21T13:41:07Z) - Model-based Analysis and Specification of Functional Requirements and
Tests for Complex Automotive Systems [0.19837121116620585]
We propose a technique that starts with the early identification of validation concerns from a stakeholder perspective.
We develop a Model-Based Systems Engineering (MBSE) methodology to ensure complete and consistent requirements and test specifications.
Our study corroborates that our methodology is applicable and improves existing requirements and test specification processes.
arXiv Detail & Related papers (2022-09-03T18:24:32Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Concept for a Technical Infrastructure for Management of Predictive
Models in Industrial Applications [0.0]
We describe our technological concept for a model management system.
This concept includes versioned storage of data, support for different machine learning algorithms, fine tuning of models, subsequent deployment of models and monitoring of model performance after deployment.
arXiv Detail & Related papers (2021-07-29T08:38:46Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.