NonverbalTTS: A Public English Corpus of Text-Aligned Nonverbal Vocalizations with Emotion Annotations for Text-to-Speech
- URL: http://arxiv.org/abs/2507.13155v1
- Date: Thu, 17 Jul 2025 14:17:40 GMT
- Title: NonverbalTTS: A Public English Corpus of Text-Aligned Nonverbal Vocalizations with Emotion Annotations for Text-to-Speech
- Authors: Maksim Borisov, Egor Spirin, Daria Diatlova,
- Abstract summary: NonverbalTTS (NVTTS) is a 17-hour open-access dataset annotated with 10 types of NVs (e.g., laughter, coughs) and 8 emotional categories.<n>We propose a comprehensive pipeline that integrates automatic speech recognition (ASR), NV tagging, emotion classification, and a fusion algorithm to merge transcriptions from multiple annotators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current expressive speech synthesis models are constrained by the limited availability of open-source datasets containing diverse nonverbal vocalizations (NVs). In this work, we introduce NonverbalTTS (NVTTS), a 17-hour open-access dataset annotated with 10 types of NVs (e.g., laughter, coughs) and 8 emotional categories. The dataset is derived from popular sources, VoxCeleb and Expresso, using automated detection followed by human validation. We propose a comprehensive pipeline that integrates automatic speech recognition (ASR), NV tagging, emotion classification, and a fusion algorithm to merge transcriptions from multiple annotators. Fine-tuning open-source text-to-speech (TTS) models on the NVTTS dataset achieves parity with closed-source systems such as CosyVoice2, as measured by both human evaluation and automatic metrics, including speaker similarity and NV fidelity. By releasing NVTTS and its accompanying annotation guidelines, we address a key bottleneck in expressive TTS research. The dataset is available at https://huggingface.co/datasets/deepvk/NonverbalTTS.
Related papers
- NVSpeech: An Integrated and Scalable Pipeline for Human-Like Speech Modeling with Paralinguistic Vocalizations [7.55995559331834]
Paralinguistic vocalizations are integral to natural spoken communication.<n> NVSpeech bridges the recognition and synthesis of paralinguistic vocalizations.<n> NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin.
arXiv Detail & Related papers (2025-08-06T08:25:26Z) - EmergentTTS-Eval: Evaluating TTS Models on Complex Prosodic, Expressiveness, and Linguistic Challenges Using Model-as-a-Judge [25.51206687438354]
We introduce $textitEmergentTTS-Eval, a comprehensive benchmark covering six challenging TTS scenarios.<n>Our framework automates both test-case generation and evaluation, making the benchmark easily accessible.<n>We evaluate state-of-the-art open-source and proprietary TTS systems, such as 11Labs, Deepgram, and OpenAI's 4o-mini-TTS, on EmergentTTS-Eval.
arXiv Detail & Related papers (2025-05-29T02:36:24Z) - Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens [31.575335190916995]
We introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech that decomposes speech into two complementary token types.<n>To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations.
arXiv Detail & Related papers (2025-03-03T16:23:10Z) - Hard-Synth: Synthesizing Diverse Hard Samples for ASR using Zero-Shot TTS and LLM [48.71951982716363]
Text-to-speech (TTS) models have been widely adopted to enhance automatic speech recognition (ASR) systems.
We propose Hard- Synth, a novel ASR data augmentation method that leverages large language models (LLMs) and advanced zero-shot TTS.
Our approach employs LLMs to generate diverse in-domain text through rewriting, without relying on additional text data.
arXiv Detail & Related papers (2024-11-20T09:49:37Z) - Algorithms For Automatic Accentuation And Transcription Of Russian Texts In Speech Recognition Systems [0.0]
This paper presents an overview of rule-based system for automatic accentuation and phonemic transcription of Russian texts.
Two parts of the developed system, accentuation and transcription, use different approaches to achieve correct phonemic representations of input phrases.
The developed toolkit is written in the Python language and is accessible on GitHub for any researcher interested.
arXiv Detail & Related papers (2024-10-03T14:43:43Z) - Text-To-Speech Synthesis In The Wild [76.71096751337888]
We introduce the TTS In the Wild dataset, created through a fully automated pipeline applied to the VoxCeleb1 dataset.<n>It comprises two training sets: TITW-Hard, derived from the transcription, segmentation, and selection of raw VoxCeleb1 data, and TITW-Easy, which incorporates additional enhancement and data selection based on DNSMOS.
arXiv Detail & Related papers (2024-09-13T10:58:55Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
We introduce Expresso, a high-quality expressive speech dataset for textless speech synthesis.
This dataset includes both read speech and improvised dialogues rendered in 26 spontaneous expressive styles.
We evaluate resynthesis quality with automatic metrics for different self-supervised discrete encoders.
arXiv Detail & Related papers (2023-08-10T17:41:19Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
We investigate text generation and injection for improving the performance of an industry commonly-used streaming model, Transformer-Transducer (T-T)
We first propose a strategy to generate code-switching text data and then investigate injecting generated text into T-T model explicitly by Text-To-Speech (TTS) conversion or implicitly by tying speech and text latent spaces.
Experimental results on the T-T model trained with a dataset containing 1,800 hours of real Mandarin-English code-switched speech show that our approaches to inject generated code-switching text significantly boost the performance of T-T models.
arXiv Detail & Related papers (2023-03-20T09:13:27Z) - Discrete Cross-Modal Alignment Enables Zero-Shot Speech Translation [71.35243644890537]
End-to-end Speech Translation (ST) aims at translating the source language speech into target language text without generating the intermediate transcriptions.
Existing zero-shot methods fail to align the two modalities of speech and text into a shared semantic space.
We propose a novel Discrete Cross-Modal Alignment (DCMA) method that employs a shared discrete vocabulary space to accommodate and match both modalities of speech and text.
arXiv Detail & Related papers (2022-10-18T03:06:47Z) - Dict-TTS: Learning to Pronounce with Prior Dictionary Knowledge for
Text-to-Speech [88.22544315633687]
Polyphone disambiguation aims to capture accurate pronunciation knowledge from natural text sequences for reliable Text-to-speech systems.
We propose Dict-TTS, a semantic-aware generative text-to-speech model with an online website dictionary.
Experimental results in three languages show that our model outperforms several strong baseline models in terms of pronunciation accuracy.
arXiv Detail & Related papers (2022-06-05T10:50:34Z) - Guided-TTS:Text-to-Speech with Untranscribed Speech [22.548875263927396]
We present Guided-TTS, a high-quality TTS model that learns to generate speech from untranscribed speech data.
For text-to-speech synthesis, we guide the generative process of the unconditional DDPM via phoneme classification to produce mel-spectrograms.
arXiv Detail & Related papers (2021-11-23T10:05:05Z) - GraphSpeech: Syntax-Aware Graph Attention Network For Neural Speech
Synthesis [79.1885389845874]
Transformer-based end-to-end text-to-speech synthesis (TTS) is one of such successful implementations.
We propose a novel neural TTS model, denoted as GraphSpeech, that is formulated under graph neural network framework.
Experiments show that GraphSpeech consistently outperforms the Transformer TTS baseline in terms of spectrum and prosody rendering of utterances.
arXiv Detail & Related papers (2020-10-23T14:14:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.