NVSpeech: An Integrated and Scalable Pipeline for Human-Like Speech Modeling with Paralinguistic Vocalizations
- URL: http://arxiv.org/abs/2508.04195v1
- Date: Wed, 06 Aug 2025 08:25:26 GMT
- Title: NVSpeech: An Integrated and Scalable Pipeline for Human-Like Speech Modeling with Paralinguistic Vocalizations
- Authors: Huan Liao, Qinke Ni, Yuancheng Wang, Yiheng Lu, Haoyue Zhan, Pengyuan Xie, Qiang Zhang, Zhizheng Wu,
- Abstract summary: Paralinguistic vocalizations are integral to natural spoken communication.<n> NVSpeech bridges the recognition and synthesis of paralinguistic vocalizations.<n> NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin.
- Score: 7.55995559331834
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Paralinguistic vocalizations-including non-verbal sounds like laughter and breathing, as well as lexicalized interjections such as "uhm" and "oh"-are integral to natural spoken communication. Despite their importance in conveying affect, intent, and interactional cues, such cues remain largely overlooked in conventional automatic speech recognition (ASR) and text-to-speech (TTS) systems. We present NVSpeech, an integrated and scalable pipeline that bridges the recognition and synthesis of paralinguistic vocalizations, encompassing dataset construction, ASR modeling, and controllable TTS. (1) We introduce a manually annotated dataset of 48,430 human-spoken utterances with 18 word-level paralinguistic categories. (2) We develop the paralinguistic-aware ASR model, which treats paralinguistic cues as inline decodable tokens (e.g., "You're so funny [Laughter]"), enabling joint lexical and non-verbal transcription. This model is then used to automatically annotate a large corpus, the first large-scale Chinese dataset of 174,179 utterances (573 hours) with word-level alignment and paralingustic cues. (3) We finetune zero-shot TTS models on both human- and auto-labeled data to enable explicit control over paralinguistic vocalizations, allowing context-aware insertion at arbitrary token positions for human-like speech synthesis. By unifying the recognition and generation of paralinguistic vocalizations, NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin, integrating recognition and synthesis in a scalable and controllable manner. Dataset and audio demos are available at https://nvspeech170k.github.io/.
Related papers
- NonverbalTTS: A Public English Corpus of Text-Aligned Nonverbal Vocalizations with Emotion Annotations for Text-to-Speech [0.0]
NonverbalTTS (NVTTS) is a 17-hour open-access dataset annotated with 10 types of NVs (e.g., laughter, coughs) and 8 emotional categories.<n>We propose a comprehensive pipeline that integrates automatic speech recognition (ASR), NV tagging, emotion classification, and a fusion algorithm to merge transcriptions from multiple annotators.
arXiv Detail & Related papers (2025-07-17T14:17:40Z) - CosyVoice 3: Towards In-the-wild Speech Generation via Scaling-up and Post-training [70.31925012315064]
We present CosyVoice 3, an improved model designed for zero-shot multilingual speech synthesis in the wild.<n>Key features of CosyVoice 3 include a novel speech tokenizer to improve prosody naturalness.<n>Data is expanded from ten thousand hours to one million hours, encompassing 9 languages and 18 Chinese dialects.
arXiv Detail & Related papers (2025-05-23T07:55:21Z) - CosyVoice 2: Scalable Streaming Speech Synthesis with Large Language Models [74.80386066714229]
We present an improved streaming speech synthesis model, CosyVoice 2.<n>Specifically, we introduce finite-scalar quantization to improve codebook utilization of speech tokens.<n>We develop a chunk-aware causal flow matching model to support various synthesis scenarios.
arXiv Detail & Related papers (2024-12-13T12:59:39Z) - Scaling Speech-Text Pre-training with Synthetic Interleaved Data [31.77653849518526]
Speech language models (SpeechLMs) accept speech input and produce speech output, allowing for more natural human-computer interaction.<n>Traditional approaches for developing SpeechLMs are constrained by the limited availability of unsupervised speech data and parallel speech-text data.<n>We propose a novel approach to scaling speech-text pre-training by leveraging large-scale synthetic interleaved data derived from text corpora.
arXiv Detail & Related papers (2024-11-26T17:19:09Z) - Coding Speech through Vocal Tract Kinematics [5.0751585360524425]
Articulatory features are traces of kinematic shapes of vocal tract articulators and source features, which are intuitively interpretable and controllable.<n>Speaker embedding is effectively disentangled from articulations, which enables accent-perserving zero-shot voice conversion.
arXiv Detail & Related papers (2024-06-18T18:38:17Z) - DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage [7.096838107088313]
DisfluencySpeech is a studio-quality labeled English speech dataset with paralanguage.
A single speaker recreates nearly 10 hours of expressive utterances from the Switchboard-1 Telephone Speech Corpus (Switchboard)
arXiv Detail & Related papers (2024-06-13T05:23:22Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
We propose "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space.
The proposed CTAP model is trained on 210k speech and phoneme pairs, achieving minimally-supervised TTS, VC, and ASR.
arXiv Detail & Related papers (2023-09-01T12:35:43Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
We introduce Expresso, a high-quality expressive speech dataset for textless speech synthesis.
This dataset includes both read speech and improvised dialogues rendered in 26 spontaneous expressive styles.
We evaluate resynthesis quality with automatic metrics for different self-supervised discrete encoders.
arXiv Detail & Related papers (2023-08-10T17:41:19Z) - Textless Unit-to-Unit training for Many-to-Many Multilingual Speech-to-Speech Translation [65.13824257448564]
This paper proposes a textless training method for many-to-many multilingual speech-to-speech translation.
By treating the speech units as pseudo-text, we can focus on the linguistic content of the speech.
We demonstrate that the proposed UTUT model can be effectively utilized not only for Speech-to-Speech Translation (S2ST) but also for multilingual Text-to-Speech Synthesis (T2S) and Text-to-Speech Translation (T2ST)
arXiv Detail & Related papers (2023-08-03T15:47:04Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
We develop NaturalSpeech 2, a TTS system that leverages a neural audio predictor with residual vectorizers to get the quantized latent vectors.
We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers.
NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, synthesis, and voice quality in a zero-shot setting.
arXiv Detail & Related papers (2023-04-18T16:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.