The carbon cost of materials discovery: Can machine learning really accelerate the discovery of new photovoltaics?
- URL: http://arxiv.org/abs/2507.13246v1
- Date: Thu, 17 Jul 2025 15:55:02 GMT
- Title: The carbon cost of materials discovery: Can machine learning really accelerate the discovery of new photovoltaics?
- Authors: Matthew Walker, Keith T. Butler,
- Abstract summary: Computational screening has become a powerful complement to experimental efforts in the discovery of high-performance photovoltaic (PV) materials.<n>Most rely on density functional theory (DFT) to estimate electronic and optical properties relevant to solar energy conversion.<n>Machine learning (ML) models have recently gained attention as surrogates for DFT, offering drastic reductions in resource use with competitive predictive performance.
- Score: 0.05524804393257919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational screening has become a powerful complement to experimental efforts in the discovery of high-performance photovoltaic (PV) materials. Most workflows rely on density functional theory (DFT) to estimate electronic and optical properties relevant to solar energy conversion. Although more efficient than laboratory-based methods, DFT calculations still entail substantial computational and environmental costs. Machine learning (ML) models have recently gained attention as surrogates for DFT, offering drastic reductions in resource use with competitive predictive performance. In this study, we reproduce a canonical DFT-based workflow to estimate the maximum efficiency limit and progressively replace its components with ML surrogates. By quantifying the CO$_2$ emissions associated with each computational strategy, we evaluate the trade-offs between predictive efficacy and environmental cost. Our results reveal multiple hybrid ML/DFT strategies that optimize different points along the accuracy--emissions front. We find that direct prediction of scalar quantities, such as maximum efficiency, is significantly more tractable than using predicted absorption spectra as an intermediate step. Interestingly, ML models trained on DFT data can outperform DFT workflows using alternative exchange--correlation functionals in screening applications, highlighting the consistency and utility of data-driven approaches. We also assess strategies to improve ML-driven screening through expanded datasets and improved model architectures tailored to PV-relevant features. This work provides a quantitative framework for building low-emission, high-throughput discovery pipelines.
Related papers
- InfiAlign: A Scalable and Sample-Efficient Framework for Aligning LLMs to Enhance Reasoning Capabilities [27.09178257629886]
InfiAlign is a scalable and sample-efficient post-training framework for large language models (LLMs)<n>At the core of InfiAlign is a robust data selection pipeline that automatically curates high-quality alignment data from open-source reasoning.<n>Our results highlight the effectiveness of combining principled data selection with full-stage post-training.
arXiv Detail & Related papers (2025-08-07T15:34:06Z) - Investigating Structural Pruning and Recovery Techniques for Compressing Multimodal Large Language Models: An Empirical Study [64.26593350748401]
Multimodal Large Language Models (MLLMs) demonstrate impressive capabilities.<n>Current parameter reduction techniques primarily involve training MLLMs from Small Language Models (SLMs)<n>We propose to directly compress existing MLLMs through structural pruning combined with efficient recovery training.
arXiv Detail & Related papers (2025-07-28T11:57:52Z) - EfficientLLM: Efficiency in Large Language Models [64.3537131208038]
Large Language Models (LLMs) have driven significant progress, yet their growing counts and context windows incur prohibitive compute, energy, and monetary costs.<n>We introduce EfficientLLM, a novel benchmark and the first comprehensive empirical study evaluating efficiency techniques for LLMs at scale.
arXiv Detail & Related papers (2025-05-20T02:27:08Z) - Pruning-Based TinyML Optimization of Machine Learning Models for Anomaly Detection in Electric Vehicle Charging Infrastructure [8.29566258132752]
This paper investigates a pruning method for anomaly detection in resource-constrained environments, specifically targeting EVCI.<n> optimized models achieved significant reductions in model size and inference times, with only a marginal impact on their performance.<n> Notably, our findings indicate that, in the context of EVCI, pruning and FS can enhance computational efficiency while retaining critical anomaly detection capabilities.
arXiv Detail & Related papers (2025-03-19T00:18:37Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [53.571195477043496]
We propose an algorithm named Rotated Straight-Through-Estimator (RoSTE)<n>RoSTE combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy to reduce activation outliers.<n>Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration.
arXiv Detail & Related papers (2025-02-13T06:44:33Z) - Refining Salience-Aware Sparse Fine-Tuning Strategies for Language Models [14.68920095399595]
sparsity-based PEFT (SPEFT) introduces trainable sparse adaptations to the weight matrices in the model.<n>We conduct the first systematic evaluation of salience metrics for SPEFT, inspired by zero-cost NAS proxies.<n>We compare static and dynamic masking strategies, finding that static masking, which predetermines non-zero entries before training, delivers efficiency without sacrificing performance.
arXiv Detail & Related papers (2024-12-18T04:14:35Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more computation-efficient metric for performance estimation.<n>We present FLP-M, a fundamental approach for performance prediction that addresses the practical need to integrate datasets from multiple sources during pre-training.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - Putting Density Functional Theory to the Test in
Machine-Learning-Accelerated Materials Discovery [2.7810723668216575]
We describe the advances needed in accuracy, efficiency, and approach beyond what is typical in conventional DFT-based machine learning (ML)
For DFT to be trusted for a given data point in a high- throughput screen, it must pass a series of tests.
For DFT to be trusted for a given data point in a high- throughput screen, it must pass a series of tests.
arXiv Detail & Related papers (2022-05-06T00:34:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.