Boosting Team Modeling through Tempo-Relational Representation Learning
- URL: http://arxiv.org/abs/2507.13305v1
- Date: Thu, 17 Jul 2025 17:22:41 GMT
- Title: Boosting Team Modeling through Tempo-Relational Representation Learning
- Authors: Vincenzo Marco De Luca, Giovanna Varni, Andrea Passerini,
- Abstract summary: Team modeling remains a fundamental challenge at the intersection of Artificial Intelligence and the Social Sciences.<n>We present TRENN, a novel tempo-relational architecture that integrates: (i) an automatic temporal graph extractor, (ii) a tempo-relational encoder, (iii) a decoder for team construct prediction, and (iv) two complementary explainability modules.
- Score: 9.427356802394437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Team modeling remains a fundamental challenge at the intersection of Artificial Intelligence and the Social Sciences. Social Science research emphasizes the need to jointly model dynamics and relations, while practical applications demand unified models capable of inferring multiple team constructs simultaneously, providing interpretable insights and actionable recommendations to enhance team performance. However, existing works do not meet these practical demands. To bridge this gap, we present TRENN, a novel tempo-relational architecture that integrates: (i) an automatic temporal graph extractor, (ii) a tempo-relational encoder, (iii) a decoder for team construct prediction, and (iv) two complementary explainability modules. TRENN jointly captures relational and temporal team dynamics, providing a solid foundation for MT-TRENN, which extends TReNN by replacing the decoder with a multi-task head, enabling the model to learn shared Social Embeddings and simultaneously predict multiple team constructs, including Emergent Leadership, Leadership Style, and Teamwork components. Experimental results demonstrate that our approach significantly outperforms approaches that rely exclusively on temporal or relational information. Additionally, experimental evaluation has shown that the explainability modules integrated in MT-TRENN yield interpretable insights and actionable suggestions to support team improvement. These capabilities make our approach particularly well-suited for Human-Centered AI applications, such as intelligent decision-support systems in high-stakes collaborative environments.
Related papers
- Generic-to-Specific Reasoning and Learning for Scalable Ad Hoc Teamwork [10.462598319732187]
This paper advocates leveraging the complementary strengths of knowledge-based and data-driven methods for reasoning and learning for ad hoc teamwork.<n>For any given goal, our architecture enables each ad hoc agent to determine its actions through non-monotonic logical reasoning.<n>We experimentally evaluate our architecture's capabilities in VirtualHome, a realistic physics-based 3D simulation environment.
arXiv Detail & Related papers (2025-08-06T07:44:38Z) - UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
We introduce bfUnistage, a unified Transformer-based framework fortemporal modeling.<n>Our work demonstrates that a task-specific vision-text can build a generalizable model fortemporal learning.<n>We also introduce a temporal module to incorporate temporal dynamics explicitly.
arXiv Detail & Related papers (2025-03-26T17:33:23Z) - Interactive Symbolic Regression through Offline Reinforcement Learning: A Co-Design Framework [11.804368618793273]
Symbolic Regression holds great potential for uncovering underlying mathematical and physical relationships from observed data.<n>Current state-of-the-art approaches typically do not consider the integration of domain experts' prior knowledge.<n>We propose the Symbolic Q-network (Sym-Q), an advanced interactive framework for large-scale symbolic regression.
arXiv Detail & Related papers (2025-02-05T06:26:49Z) - Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization [0.6629765271909505]
This paper introduces a novel approach to model alignment through weak-to-strong generalization in the context of language models.
Our results suggest that this facilitation-based approach not only enhances model performance but also provides insights into the nature of model alignment.
arXiv Detail & Related papers (2024-09-11T15:16:25Z) - Interactive Symbolic Regression through Offline Reinforcement Learning: A Co-Design Framework [11.804368618793273]
Symbolic Regression holds great potential for uncovering underlying mathematical and physical relationships from observed data.<n>Current state-of-the-art approaches typically do not consider the integration of domain experts' prior knowledge.<n>We propose the Symbolic Q-network (Sym-Q), an advanced interactive framework for large-scale symbolic regression.
arXiv Detail & Related papers (2024-02-07T22:53:54Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.