論文の概要: Imbalance in Balance: Online Concept Balancing in Generation Models
- arxiv url: http://arxiv.org/abs/2507.13345v1
- Date: Thu, 17 Jul 2025 17:59:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.616936
- Title: Imbalance in Balance: Online Concept Balancing in Generation Models
- Title(参考訳): バランスの不均衡: 生成モデルにおけるオンラインコンセプトバランス
- Authors: Yukai Shi, Jiarong Ou, Rui Chen, Haotian Yang, Jiahao Wang, Xin Tao, Pengfei Wan, Di Zhang, Kun Gai,
- Abstract要約: 視覚生成タスクでは、複雑な概念の応答と組み合わせは安定性に欠け、エラーを起こしやすい。
本稿では,概念応答の粗悪な要因について,精巧に設計した実験を通して検討する。
- 参考スコア(独自算出の注目度): 35.740734341315964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In visual generation tasks, the responses and combinations of complex concepts often lack stability and are error-prone, which remains an under-explored area. In this paper, we attempt to explore the causal factors for poor concept responses through elaborately designed experiments. We also design a concept-wise equalization loss function (IMBA loss) to address this issue. Our proposed method is online, eliminating the need for offline dataset processing, and requires minimal code changes. In our newly proposed complex concept benchmark Inert-CompBench and two other public test sets, our method significantly enhances the concept response capability of baseline models and yields highly competitive results with only a few codes.
- Abstract(参考訳): 視覚生成タスクでは、複雑な概念の応答と組み合わせは、しばしば安定性に欠け、未探索領域であるエラーを起こしやすい。
本稿では,概念応答の低さに対する因果的要因について,精巧に設計した実験を通して検討する。
また、この問題に対処するための概念的等化損失関数(IMBA損失)を設計する。
提案手法はオンラインであり,オフラインのデータセット処理の必要性を排除し,コードの変更を最小限に抑える。
新たに提案した複雑な概念ベンチマークであるInert-CompBenchと他の2つの公開テストセットにおいて,本手法はベースラインモデルの概念応答能力を著しく向上し,少数のコードで高い競争力を発揮する。
関連論文リスト
- Interpretable Reward Modeling with Active Concept Bottlenecks [54.00085739303773]
本稿では,解釈可能な嗜好学習を可能にする報酬モデリングフレームワークであるConcept Bottleneck Reward Models (CB-RM)を紹介する。
不透明報酬関数に依存する標準的なRLHF法とは異なり、CB-RMは報酬予測を人間の解釈可能な概念に分解する。
我々は,最も情報性の高い概念ラベルを動的に取得する能動的学習戦略を定式化する。
論文 参考訳(メタデータ) (2025-07-07T06:26:04Z) - Interpretable Few-Shot Image Classification via Prototypical Concept-Guided Mixture of LoRA Experts [79.18608192761512]
自己説明可能なモデル(SEM)は、視覚認識プロセスをより解釈可能なものにするために、プロトタイプ概念学習(PCL)に依存している。
パラメトリック不均衡と表現の不整合という2つの重要な課題を緩和するFew-Shotプロトタイプ概念分類フレームワークを提案する。
我々のアプローチは、既存のSEMを顕著な差で常に上回っており、5-way 5-shot分類では4.2%-8.7%の相対的な利得がある。
論文 参考訳(メタデータ) (2025-06-05T06:39:43Z) - Concept Layers: Enhancing Interpretability and Intervenability via LLM Conceptualization [2.163881720692685]
本稿では,概念層をアーキテクチャに組み込むことにより,解釈可能性とインターベンタビリティを既存モデルに組み込む新しい手法を提案する。
我々のアプローチは、モデルの内部ベクトル表現を、再構成してモデルにフィードバックする前に、概念的で説明可能なベクトル空間に投影する。
複数のタスクにまたがるCLを評価し、本来のモデルの性能と合意を維持しつつ、意味のある介入を可能にしていることを示す。
論文 参考訳(メタデータ) (2025-02-19T11:10:19Z) - Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens [19.324263034925796]
概念ベースモデル(concept-based Model)は、入力を高レベルな概念にマッピングする概念抽出器と、これらを予測に変換する推論層を学習するニューラルネットワークである。
概念ベースモデルと推論ショートカット(RS)の新たな接続を確立することでこの問題を研究する。
具体的には、まずRSを概念ベースモデルのより複雑な設定に拡張し、次に概念と推論層の両方を識別するための理論的条件を導出する。
論文 参考訳(メタデータ) (2025-02-16T19:45:09Z) - Towards Robust and Reliable Concept Representations: Reliability-Enhanced Concept Embedding Model [22.865870813626316]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、人間の理解可能な概念を意思決定の中間体として予測することにより、解釈可能性を高めることを目的としている。
概念に関係のない特徴に対する感受性と、異なるサンプルの同じ概念に対する意味的一貫性の欠如である。
本稿では,Reliability-Enhanced Concept Embedding Model (RECEM) を提案する。Reliability-Enhanced Concept Embedding Model (RECEM) は2つの戦略を導入する。
論文 参考訳(メタデータ) (2025-02-03T09:29:39Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - LoRA-Composer: Leveraging Low-Rank Adaptation for Multi-Concept Customization in Training-Free Diffusion Models [33.379758040084894]
ドメイン内の課題として、マルチコンセプトのカスタマイズが登場します。
既存のアプローチでは、複数のローランド適応(LoRA)の融合行列をトレーニングして、さまざまな概念をひとつのイメージにマージすることが多い。
LoRA-Composerは、複数のLoRAをシームレスに統合するために設計されたトレーニング不要のフレームワークである。
論文 参考訳(メタデータ) (2024-03-18T09:58:52Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z) - Sparse Linear Concept Discovery Models [11.138948381367133]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、隠蔽層が人間の理解可能な概念に結びついている一般的なアプローチである。
本稿では,Contrastive Language Imageモデルと単一スパース線形層に基づく,シンプルかつ直感的に解釈可能なフレームワークを提案する。
実験により、我々のフレームワークは、最近のCBMアプローチを精度的に上回るだけでなく、一例あたりの疎度も高いことを示す。
論文 参考訳(メタデータ) (2023-08-21T15:16:19Z) - Generalized Unbiased Scene Graph Generation [85.22334551067617]
一般化Unbiased Scene Graph Generation (G-USGG)は、述語レベルと概念レベルの不均衡を考慮に入れている。
本稿では,まれ/非一般的/共通概念間のバランスの取れた学習プロセスを確実にするマルチコンセプト学習(MCL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-09T08:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。