Just Add Geometry: Gradient-Free Open-Vocabulary 3D Detection Without Human-in-the-Loop
- URL: http://arxiv.org/abs/2507.13363v1
- Date: Sun, 06 Jul 2025 15:00:13 GMT
- Title: Just Add Geometry: Gradient-Free Open-Vocabulary 3D Detection Without Human-in-the-Loop
- Authors: Atharv Goel, Mehar Khurana,
- Abstract summary: 2D vision-language models trained on web-scale image-text pairs exhibit rich semantic understanding and support open-vocabulary detection.<n>We leverage the maturity and category diversity of 2D foundation models to perform 3D object detection without any human-annotated 3D labels.<n>Our results highlight the untapped potential of 2D foundation models for scalable 3D perception.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern 3D object detection datasets are constrained by narrow class taxonomies and costly manual annotations, limiting their ability to scale to open-world settings. In contrast, 2D vision-language models trained on web-scale image-text pairs exhibit rich semantic understanding and support open-vocabulary detection via natural language prompts. In this work, we leverage the maturity and category diversity of 2D foundation models to perform open-vocabulary 3D object detection without any human-annotated 3D labels. Our pipeline uses a 2D vision-language detector to generate text-conditioned proposals, which are segmented with SAM and back-projected into 3D using camera geometry and either LiDAR or monocular pseudo-depth. We introduce a geometric inflation strategy based on DBSCAN clustering and Rotating Calipers to infer 3D bounding boxes without training. To simulate adverse real-world conditions, we construct Pseudo-nuScenes, a fog-augmented, RGB-only variant of the nuScenes dataset. Experiments demonstrate that our method achieves competitive localization performance across multiple settings, including LiDAR-based and purely RGB-D inputs, all while remaining training-free and open-vocabulary. Our results highlight the untapped potential of 2D foundation models for scalable 3D perception. We open-source our code and resources at https://github.com/atharv0goel/open-world-3D-det.
Related papers
- HyperPointFormer: Multimodal Fusion in 3D Space with Dual-Branch Cross-Attention Transformers [10.24051363232541]
Multimodal remote sensing data, including spectral and lidar or photogrammetry, is crucial for achieving satisfactory land-use / land-cover classification results in urban scenes.<n>We propose a fully 3D-based method that fuses all modalities within the 3D point cloud and employs a dedicated dual-attention Transformer model.<n>Our findings indicate that 3D fusion delivers competitive results compared to 2D methods and offers more flexibility by providing 3D predictions.
arXiv Detail & Related papers (2025-05-29T07:45:19Z) - Unifying 2D and 3D Vision-Language Understanding [85.84054120018625]
We introduce UniVLG, a unified architecture for 2D and 3D vision-language learning.<n>UniVLG bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems.
arXiv Detail & Related papers (2025-03-13T17:56:22Z) - Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [57.53523870705433]
We propose a novel open-vocabulary monocular 3D object detection framework, dubbed OVM3D-Det.
OVM3D-Det does not require high-precision LiDAR or 3D sensor data for either input or generating 3D bounding boxes.
It employs open-vocabulary 2D models and pseudo-LiDAR to automatically label 3D objects in RGB images, fostering the learning of open-vocabulary monocular 3D detectors.
arXiv Detail & Related papers (2024-11-23T21:37:21Z) - OpenGaussian: Towards Point-Level 3D Gaussian-based Open Vocabulary Understanding [54.981605111365056]
This paper introduces OpenGaussian, a method based on 3D Gaussian Splatting (3DGS) capable of 3D point-level open vocabulary understanding.<n>Our primary motivation stems from observing that existing 3DGS-based open vocabulary methods mainly focus on 2D pixel-level parsing.
arXiv Detail & Related papers (2024-06-04T07:42:33Z) - OV-Uni3DETR: Towards Unified Open-Vocabulary 3D Object Detection via Cycle-Modality Propagation [67.56268991234371]
OV-Uni3DETR achieves the state-of-the-art performance on various scenarios, surpassing existing methods by more than 6% on average.
Code and pre-trained models will be released later.
arXiv Detail & Related papers (2024-03-28T17:05:04Z) - POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images [32.33170182669095]
We describe an approach to predict open-vocabulary 3D semantic voxel occupancy map from input 2D images.
The architecture consists of a 2D-3D encoder together with occupancy prediction and 3D-language heads.
The output is a dense voxel map of 3D grounded language embeddings enabling a range of open-vocabulary tasks.
arXiv Detail & Related papers (2024-01-17T18:51:53Z) - Weakly Supervised 3D Open-vocabulary Segmentation [104.07740741126119]
We tackle the challenges in 3D open-vocabulary segmentation by exploiting pre-trained foundation models CLIP and DINO in a weakly supervised manner.
We distill the open-vocabulary multimodal knowledge and object reasoning capability of CLIP and DINO into a neural radiance field (NeRF)
A notable aspect of our approach is that it does not require any manual segmentation annotations for either the foundation models or the distillation process.
arXiv Detail & Related papers (2023-05-23T14:16:49Z) - Recursive Cross-View: Use Only 2D Detectors to Achieve 3D Object
Detection without 3D Annotations [0.5439020425819]
We propose a method that does not demand any 3D annotations, while being able to predict fully oriented 3D bounding boxes.
Our method, called Recursive Cross-View (RCV), utilizes the three-view principle to convert 3D detection into multiple 2D detection tasks.
RCV is the first 3D detection method that yields fully oriented 3D boxes without consuming 3D labels.
arXiv Detail & Related papers (2022-11-14T04:51:05Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.