VerilogDB: The Largest, Highest-Quality Dataset with a Preprocessing Framework for LLM-based RTL Generation
- URL: http://arxiv.org/abs/2507.13369v1
- Date: Wed, 09 Jul 2025 17:06:54 GMT
- Title: VerilogDB: The Largest, Highest-Quality Dataset with a Preprocessing Framework for LLM-based RTL Generation
- Authors: Paul E. Calzada, Zahin Ibnat, Tanvir Rahman, Kamal Kandula, Danyu Lu, Sujan Kumar Saha, Farimah Farahmandi, Mark Tehranipoor,
- Abstract summary: Large Language Models (LLMs) are gaining popularity for hardware design automation, particularly through Register Transfer Level (RTL) code generation.<n>We construct a robust Verilog dataset through an automated three-pronged process involving database (DB) creation and management.<n>The resulting dataset comprises 20,392 Verilog samples, 751 MB of Verilog code data, which is the largest high-quality Verilog dataset for fine-tuning to our knowledge.
- Score: 1.0798445660490976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are gaining popularity for hardware design automation, particularly through Register Transfer Level (RTL) code generation. In this work, we examine the current literature on RTL generation using LLMs and identify key requirements for training and fine-tuning datasets. We construct a robust Verilog dataset through an automated three-pronged process involving database (DB) creation and management with PostgreSQL, data collection from code hosting sites like OpenCores and GitHub, and data preprocessing to verify the codes' syntax, run logic synthesis, and extract relevant module metadata. We implement a scalable and efficient DB infrastructure to support analysis and detail our preprocessing pipeline to enforce high-quality data before DB insertion. The resulting dataset comprises 20,392 Verilog samples, 751 MB of Verilog code data, which is the largest high-quality Verilog dataset for LLM fine-tuning to our knowledge. We further evaluate the dataset, address associated challenges, and explore potential applications for future research and development in LLM-based hardware generation.
Related papers
- Large Language Models are Good Relational Learners [55.40941576497973]
We introduce Rel-LLM, a novel architecture that utilizes a graph neural network (GNN)- based encoder to generate structured relational prompts for large language models (LLMs)<n>Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to process and reason over complex entity relationships.
arXiv Detail & Related papers (2025-06-06T04:07:55Z) - OpenCodeInstruct: A Large-scale Instruction Tuning Dataset for Code LLMs [62.68905180014956]
We introduce OpenCodeInstruct, the largest open-access instruction tuning dataset, comprising 5 million diverse samples.<n>Each sample includes a programming question, solution, test cases, execution feedback, and LLM-generated quality assessments.<n>We fine-tune various base models, including LLaMA and Qwen, across multiple scales (1B+, 3B+, and 7B+) using our dataset.
arXiv Detail & Related papers (2025-04-05T02:52:16Z) - Beyond Quacking: Deep Integration of Language Models and RAG into DuckDB [44.057784044659726]
Large language models (LLMs) have made it easier to prototype such retrieval and reasoning data pipelines.<n>This often involves orchestrating data systems, managing data movement, and handling low-level details.<n>We introduce FlockMTL: an extension for abstractions that integrates deeply LLM capabilities and retrieval-augmented generation.
arXiv Detail & Related papers (2025-04-01T19:48:17Z) - Relational Database Augmented Large Language Model [59.38841050766026]
Large language models (LLMs) excel in many natural language processing (NLP) tasks.
They can only incorporate new knowledge through training or supervised fine-tuning processes.
This precise, up-to-date, and private information is typically stored in relational databases.
arXiv Detail & Related papers (2024-07-21T06:19:10Z) - Data is all you need: Finetuning LLMs for Chip Design via an Automated design-data augmentation framework [50.02710905062184]
This paper proposes an automated design-data augmentation framework, which generates high-volume and high-quality natural language aligned with Verilog and EDA scripts.
The accuracy of Verilog generation surpasses that of the current state-of-the-art open-source Verilog generation model, increasing from 58.8% to 70.6% with the same benchmark.
arXiv Detail & Related papers (2024-03-17T13:01:03Z) - SEED: Domain-Specific Data Curation With Large Language Models [22.54280367957015]
We present SEED, an LLM-as-compiler approach that automatically generates domain-specific data curation solutions via Large Language Models (LLMs)
SEED features an that automatically selects from the four LLM-assisted modules and forms a hybrid execution pipeline that best fits the task at hand.
arXiv Detail & Related papers (2023-10-01T17:59:20Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - Querying Large Language Models with SQL [16.383179496709737]
In many use-cases, information is stored in text but not available in structured data.
With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents.
We present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM.
arXiv Detail & Related papers (2023-04-02T06:58:14Z) - HLSDataset: Open-Source Dataset for ML-Assisted FPGA Design using High
Level Synthesis [1.7795190822602627]
This paper presents a dataset for ML-assisted FPGA design using HLS, called HLSDataset.
The dataset is generated from widely used HLS C benchmarks including Polybench, Machsuite, CHStone and Rossetta.
The total number of generated Verilog samples is nearly 9,000 per FPGA type.
arXiv Detail & Related papers (2023-02-17T17:00:12Z) - Data Augmentation for Abstractive Query-Focused Multi-Document
Summarization [129.96147867496205]
We present two QMDS training datasets, which we construct using two data augmentation methods.
These two datasets have complementary properties, i.e., QMDSCNN has real summaries but queries are simulated, while QMDSIR has real queries but simulated summaries.
We build end-to-end neural network models on the combined datasets that yield new state-of-the-art transfer results on DUC datasets.
arXiv Detail & Related papers (2021-03-02T16:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.