DyG-RAG: Dynamic Graph Retrieval-Augmented Generation with Event-Centric Reasoning
- URL: http://arxiv.org/abs/2507.13396v1
- Date: Wed, 16 Jul 2025 10:22:35 GMT
- Title: DyG-RAG: Dynamic Graph Retrieval-Augmented Generation with Event-Centric Reasoning
- Authors: Qingyun Sun, Jiaqi Yuan, Shan He, Xiao Guan, Haonan Yuan, Xingcheng Fu, Jianxin Li, Philip S. Yu,
- Abstract summary: We introduce DyG-RAG, a novel event-centric dynamic graph retrieval-augmented generation framework.<n>To capture and reason over temporal knowledge embedded in unstructured text, DyG-RAG proposes Dynamic Event Units (DEUs)<n>To ensure temporally consistent generation, DyG-RAG introduces an event timeline retrieval pipeline.
- Score: 38.28580037356542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Retrieval-Augmented Generation has emerged as a powerful paradigm for grounding large language models with external structured knowledge. However, existing Graph RAG methods struggle with temporal reasoning, due to their inability to model the evolving structure and order of real-world events. In this work, we introduce DyG-RAG, a novel event-centric dynamic graph retrieval-augmented generation framework designed to capture and reason over temporal knowledge embedded in unstructured text. To eliminate temporal ambiguity in traditional retrieval units, DyG-RAG proposes Dynamic Event Units (DEUs) that explicitly encode both semantic content and precise temporal anchors, enabling accurate and interpretable time-aware retrieval. To capture temporal and causal dependencies across events, DyG-RAG constructs an event graph by linking DEUs that share entities and occur close in time, supporting efficient and meaningful multi-hop reasoning. To ensure temporally consistent generation, DyG-RAG introduces an event timeline retrieval pipeline that retrieves event sequences via time-aware traversal, and proposes a Time Chain-of-Thought strategy for temporally grounded answer generation. This unified pipeline enables DyG-RAG to retrieve coherent, temporally ordered event sequences and to answer complex, time-sensitive queries that standard RAG systems cannot resolve. Extensive experiments on temporal QA benchmarks demonstrate that DyG-RAG significantly improves the accuracy and recall of three typical types of temporal reasoning questions, paving the way for more faithful and temporal-aware generation. DyG-RAG is available at https://github.com/RingBDStack/DyG-RAG.
Related papers
- T-GRAG: A Dynamic GraphRAG Framework for Resolving Temporal Conflicts and Redundancy in Knowledge Retrieval [4.114480531154174]
We propose Temporal GraphRAG (T-GRAG), a dynamic, temporally-aware RAG framework that models the evolution of knowledge over time.<n>T-GRAG consists of five key components: (1) a Temporal Knowledge Graph Generator that creates time-stamped, evolving graph structures; (2) a Temporal Query Decomposition mechanism that breaks complex temporal queries into manageable sub-queries; and (3) a Three-layer Interactive Retriever that progressively filters and refines retrieval across temporal subgraphs.<n>Extensive experiments show that T-GRAG significantly outperforms prior RAG and GraphRAG baselines in both retrieval accuracy and response
arXiv Detail & Related papers (2025-08-03T09:15:36Z) - EraRAG: Efficient and Incremental Retrieval Augmented Generation for Growing Corpora [20.890240791042302]
Graph-based Retrieval-Augmented Generation (Graph-RAG) enhances large language models (LLMs) by structuring retrieval over an external corpus.<n>We introduce EraRAG, a novel multi-layered Graph-RAG framework that supports efficient and scalable dynamic updates.<n>Our method leverages hyperplane-based Locality-Sensitive Hashing (LSH) to partition and organize the original corpus into hierarchical graph structures.
arXiv Detail & Related papers (2025-06-26T03:01:33Z) - Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation [69.45495166424642]
We develop a robust and discriminative QA benchmark to measure temporal, causal, and character consistency understanding in narrative documents.<n>We then introduce Entity-Event RAG (E2RAG), a dual-graph framework that keeps separate entity and event subgraphs linked by a bipartite mapping.<n>Across ChronoQA, our approach outperforms state-of-the-art unstructured and KG-based RAG baselines, with notable gains on causal and character consistency queries.
arXiv Detail & Related papers (2025-06-06T10:07:21Z) - ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning [31.629956388962814]
ScaDyG is a time-aware scalable learning paradigm for dynamic graph networks.<n> experiments on 12 datasets demonstrate that ScaDyG performs comparably well or even outperforms other SOTA methods in both node and link-level downstream tasks.
arXiv Detail & Related papers (2025-01-27T12:39:16Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Learning Granularity Representation for Temporal Knowledge Graph Completion [2.689675451882683]
Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts.
This paper proposes textbfLearning textbfGranularity textbfRepresentation (termed $mathsfLGRe$) for TKG completion.
It comprises two main components: Granularity Learning (GRL) and Adaptive Granularity Balancing (AGB)
arXiv Detail & Related papers (2024-08-27T08:19:34Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - An Empirical Study: Extensive Deep Temporal Point Process [61.14164208094238]
We first review recent research emphasis and difficulties in modeling asynchronous event sequences with deep temporal point process.<n>We propose a Granger causality discovery framework for exploiting the relations among multi-types of events.
arXiv Detail & Related papers (2021-10-19T10:15:00Z) - Augmented Transformer with Adaptive Graph for Temporal Action Proposal
Generation [79.98992138865042]
We present an augmented transformer with adaptive graph network (ATAG) to exploit both long-range and local temporal contexts for TAPG.
Specifically, we enhance the vanilla transformer by equipping a snippet actionness loss and a front block, dubbed augmented transformer.
An adaptive graph convolutional network (GCN) is proposed to build local temporal context by mining the position information and difference between adjacent features.
arXiv Detail & Related papers (2021-03-30T02:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.