ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning
- URL: http://arxiv.org/abs/2501.16002v2
- Date: Thu, 30 Jan 2025 11:40:01 GMT
- Title: ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning
- Authors: Xiang Wu, Xunkai Li, Rong-Hua Li, Kangfei Zhao, Guoren Wang,
- Abstract summary: ScaDyG is a time-aware scalable learning paradigm for dynamic graph networks.
experiments on 12 datasets demonstrate that ScaDyG performs comparably well or even outperforms other SOTA methods in both node and link-level downstream tasks.
- Score: 31.629956388962814
- License:
- Abstract: Dynamic graphs (DGs), which capture time-evolving relationships between graph entities, have widespread real-world applications. To efficiently encode DGs for downstream tasks, most dynamic graph neural networks follow the traditional message-passing mechanism and extend it with time-based techniques. Despite their effectiveness, the growth of historical interactions introduces significant scalability issues, particularly in industry scenarios. To address this limitation, we propose ScaDyG, with the core idea of designing a time-aware scalable learning paradigm as follows: 1) Time-aware Topology Reformulation: ScaDyG first segments historical interactions into time steps (intra and inter) based on dynamic modeling, enabling weight-free and time-aware graph propagation within pre-processing. 2) Dynamic Temporal Encoding: To further achieve fine-grained graph propagation within time steps, ScaDyG integrates temporal encoding through a combination of exponential functions in a scalable manner. 3) Hypernetwork-driven Message Aggregation: After obtaining the propagated features (i.e., messages), ScaDyG utilizes hypernetwork to analyze historical dependencies, implementing node-wise representation by an adaptive temporal fusion. Extensive experiments on 12 datasets demonstrate that ScaDyG performs comparably well or even outperforms other SOTA methods in both node and link-level downstream tasks, with fewer learnable parameters and higher efficiency.
Related papers
- A Deep Probabilistic Framework for Continuous Time Dynamic Graph Generation [4.568104644312763]
We formalize this approach as DG-Gen, a generative framework for continuous time dynamic graphs.
Our experiments demonstrate that DG-Gen not only generates higher fidelity graphs compared to traditional methods but also significantly advances link prediction tasks.
arXiv Detail & Related papers (2024-12-20T05:34:11Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - DyGMamba: Efficiently Modeling Long-Term Temporal Dependency on Continuous-Time Dynamic Graphs with State Space Models [26.989676396289145]
We present DyGMamba, a learning model for continuous-time dynamic graphs (CTDGs)
We show that DyGMamba achieves state-of-the-art in most cases.
arXiv Detail & Related papers (2024-08-08T18:25:14Z) - Input Snapshots Fusion for Scalable Discrete-Time Dynamic Graph Neural Networks [27.616083395612595]
We propose SFDyG, which combines Hawkes processes with graph neural networks to capture temporal and structural patterns in dynamic graphs effectively.
By fusing multiple snapshots into a single temporal graph, SFDyG decouples computational complexity from the number of snapshots, enabling efficient full-batch and mini-batch training.
arXiv Detail & Related papers (2024-05-11T10:05:55Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
Existing works merely view a dynamic graph as a sequence of changes.
We formulate dynamic graphs as temporal edge sequences associated with joining time of.
vertex and timespan of edges.
A time-aware Transformer is proposed to embed.
vertex' dynamic connections and ToEs into the learned.
vertex representations.
arXiv Detail & Related papers (2022-07-01T15:32:56Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.