論文の概要: Aligning Knowledge Graphs and Language Models for Factual Accuracy
- arxiv url: http://arxiv.org/abs/2507.13411v1
- Date: Thu, 17 Jul 2025 08:15:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.085469
- Title: Aligning Knowledge Graphs and Language Models for Factual Accuracy
- Title(参考訳): 実測精度のための知識グラフと言語モデルのアライメント
- Authors: Nur A Zarin Nishat, Andrea Coletta, Luigi Bellomarini, Kossi Amouzouvi, Jens Lehmann, Sahar Vahdati,
- Abstract要約: 本稿では,ALIGNed-LLMを提案する。
我々は、TransEのようなトレーニング済みの知識グラフ埋め込み(KGE)モデルとトレーニング可能なプロジェクション層からの埋め込みを使用して、エンティティとテキストの埋め込みを調整します。
- 参考スコア(独自算出の注目度): 7.205708660952737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models like GPT-4, Gemini, and Claude have transformed natural language processing (NLP) tasks such as question answering, dialogue generation, summarization, and so forth; yet their susceptibility to hallucination stands as one of the major challenges. Among numerous approaches to overcome this challenge, integration of Knowledge Graphs (KGs) into language models has emerged as a promising solution as it provides structured, reliable, domain-specific, and up-to-date external information to the language models. In this paper, we introduce ALIGNed-LLM, a simple yet effective approach to improve language models' factuality via a lean strategy to infuse KGs into the latent space of language models inspired by LLaVA where visual and textual information is infused. We use embeddings from a pre-trained Knowledge Graph Embedding (KGE) model, such as TransE, and a trainable projection layer to align entity and text embeddings. This alignment enables the language model to distinguish between similar entities improving factual grounding and reducing hallucination. We tested our approach on three popular questions-answering benchmark datasets alongside language models of varying sizes, showing significant improvement. Furthermore, we applied our approach to a real-world financial use case from a large central bank in Europe, which demands high accuracy and precision, demonstrating a substantial improvement of the LLM answers.
- Abstract(参考訳): GPT-4、Gemini、Claudeといった大規模言語モデルは、質問応答、対話生成、要約などの自然言語処理(NLP)タスクを変換してきたが、幻覚への感受性は大きな課題の1つである。
この課題を克服するための多くのアプローチの中で、言語モデルへの知識グラフ(KG)の統合は、構造化され、信頼性があり、ドメイン固有であり、最新の外部情報を言語モデルに提供することで、有望なソリューションとして現れている。
本稿では,LLaVAにインスパイアされた言語モデルの潜在空間にKGを注入するリーン戦略を通じて,言語モデルの事実性を改善するための,シンプルかつ効果的なアプローチであるALIGNed-LLMを紹介する。
我々は、TransEのようなトレーニング済みの知識グラフ埋め込み(KGE)モデルとトレーニング可能なプロジェクション層からの埋め込みを使用して、エンティティとテキストの埋め込みを調整します。
このアライメントにより、言語モデルは、事実的グラウンドを改善する類似のエンティティと幻覚の低減を区別することができる。
さまざまなサイズの言語モデルとともに,人気の高い3つの質問回答ベンチマークデータセットを用いて,アプローチを検証したところ,大幅な改善が得られた。
さらに,欧州の大手中央銀行の実際の金融ユースケースにアプローチを適用し,高い精度と精度を要求し,LCMの回答を大幅に改善した。
関連論文リスト
- From Hallucinations to Facts: Enhancing Language Models with Curated Knowledge Graphs [20.438680406650967]
本稿では,知識グラフ(KG)を3重化して,経験的データの応答をアンカーすることで,言語モデル幻覚に対処する。
言語学的に流動的な応答を生成し、事実の正確さと文脈的関連性に深く根ざすことを目的としている。
論文 参考訳(メタデータ) (2024-12-24T20:16:10Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning [4.004641316826348]
効率的な大言語モデルとファインチューニング(CLEFT)を併用した新しい言語画像コントラスト学習手法を提案する。
複数の胸部X線およびマンモグラフィーデータセットの最先端性能を示す。
提案手法は,既存のBERTエンコーダと比較して,トレーニング可能なモデル全体のサイズを39%削減し,トレーニング可能な言語モデルを4%に削減する。
論文 参考訳(メタデータ) (2024-07-30T17:57:32Z) - Language is All a Graph Needs [33.9836278881785]
InstructGLM (Instruction-finetuned Graph Language Model) を提案する。
我々の手法は、ogbn-arxiv, Cora, PubMedデータセット上のすべてのGNNベースラインを超える。
論文 参考訳(メタデータ) (2023-08-14T13:41:09Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Spotting [121.11880210592497]
言語モデルの限られた能力は,1)暗黙的な言語モデリング,2)一方向の特徴表現,3)雑音入力を伴う言語モデルから生じる。
シーンテキストスポッティングのための自律的で双方向かつ反復的なABINet++を提案する。
論文 参考訳(メタデータ) (2022-11-19T03:50:33Z) - TunBERT: Pretrained Contextualized Text Representation for Tunisian
Dialect [0.0]
表現不足言語に対するモノリンガルトランスフォーマーに基づく言語モデルのトレーニングの実現可能性について検討する。
構造化データの代わりにノイズの多いWebクローリングデータを使用することは、そのような非標準言語にとってより便利であることを示す。
我々の最高のパフォーマンスTunBERTモデルは、下流の3つのタスクすべてにおいて最先端のタスクに到達または改善します。
論文 参考訳(メタデータ) (2021-11-25T15:49:50Z) - VidLanKD: Improving Language Understanding via Video-Distilled Knowledge
Transfer [76.3906723777229]
言語理解を改善するためのビデオ言語知識蒸留法VidLanKDを提案する。
我々は、ビデオテキストデータセット上でマルチモーダル教師モデルを訓練し、その知識をテキストデータセットを用いて学生言語モデルに伝達する。
我々の実験では、VidLanKDはテキストのみの言語モデルや発声モデルよりも一貫した改善を実現している。
論文 参考訳(メタデータ) (2021-07-06T15:41:32Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。