論文の概要: GOFAI meets Generative AI: Development of Expert Systems by means of Large Language Models
- arxiv url: http://arxiv.org/abs/2507.13550v1
- Date: Thu, 17 Jul 2025 21:57:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.143033
- Title: GOFAI meets Generative AI: Development of Expert Systems by means of Large Language Models
- Title(参考訳): GOFAIとジェネレーティブAI:大規模言語モデルによるエキスパートシステムの開発
- Authors: Eduardo C. Garrido-Merchán, Cristina Puente,
- Abstract要約: 我々は,大規模言語モデルを用いたエキスパートシステムの開発に新たなアプローチを導入する。
我々はPrologで知識を象徴的に表現し、人間の専門家によって検証と修正が可能である。
- 参考スコア(独自算出の注目度): 2.0257616108612373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of large language models (LLMs) has successfully transformed knowledge-based systems such as open domain question nswering, which can automatically produce vast amounts of seemingly coherent information. Yet, those models have several disadvantages like hallucinations or confident generation of incorrect or unverifiable facts. In this paper, we introduce a new approach to the development of expert systems using LLMs in a controlled and transparent way. By limiting the domain and employing a well-structured prompt-based extraction approach, we produce a symbolic representation of knowledge in Prolog, which can be validated and corrected by human experts. This approach also guarantees interpretability, scalability and reliability of the developed expert systems. Via quantitative and qualitative experiments with Claude Sonnet 3.7 and GPT-4.1, we show strong adherence to facts and semantic coherence on our generated knowledge bases. We present a transparent hybrid solution that combines the recall capacity of LLMs with the precision of symbolic systems, thereby laying the foundation for dependable AI applications in sensitive domains.
- Abstract(参考訳): 大規模言語モデル(LLMs)の開発は、オープンドメイン問題nsweringのような知識ベースシステムに成功し、大量の一貫性のある情報を自動的に生成することができる。
しかし、これらのモデルには幻覚や不正確な事実の確実な生成などいくつかの欠点がある。
本稿では,LSMを制御・透過的に利用したエキスパートシステム開発への新たなアプローチを提案する。
ドメインを制限し、よく構造化されたプロンプトベースの抽出アプローチを用いることで、Prologの知識を象徴的に表現し、人間の専門家が検証し、修正することができる。
このアプローチはまた、先進的なエキスパートシステムの解釈可能性、スケーラビリティ、信頼性を保証する。
Claude Sonnet 3.7 と GPT-4.1 による定量的および定性的な実験により、我々は、生成した知識ベースに事実とセマンティックコヒーレンスを強く順守することを示した。
本稿では, LLMのリコール能力とシンボルシステムの精度を組み合わせ, センシティブな領域における信頼性の高いAIアプリケーションの基礎となる, 透明なハイブリッドソリューションを提案する。
関連論文リスト
- Knowledge Augmented Finetuning Matters in both RAG and Agent Based Dialog Systems [18.83666259380603]
大規模言語モデル (LLM) はダイアログシステムに適用されている。
LLMは知識集約的なシナリオでエラーを起こしやすい。
検索拡張生成(RAG)とエージェントに基づくアプローチが現われ,実際の精度が向上した。
論文 参考訳(メタデータ) (2025-06-28T11:26:31Z) - Mind the XAI Gap: A Human-Centered LLM Framework for Democratizing Explainable AI [3.301842921686179]
我々は,専門家や非専門家のニーズに合わせて,透明性と人間中心の説明を保証する枠組みを導入する。
本フレームワークは,専門家以外の専門家が理解可能な1つの応答説明と専門家への技術的情報にカプセル化されている。
論文 参考訳(メタデータ) (2025-06-13T21:41:07Z) - Divide-Then-Align: Honest Alignment based on the Knowledge Boundary of RAG [51.120170062795566]
本稿では,問合せが知識境界外にある場合の"I don't know"で応答する機能を備えたRAGシステムを実現するためのDTAを提案する。
DTAは適切な棄権と精度のバランスをとり、検索強化システムの信頼性と信頼性を高める。
論文 参考訳(メタデータ) (2025-05-27T08:21:21Z) - Introspective Growth: Automatically Advancing LLM Expertise in Technology Judgment [0.0]
大きな言語モデル(LLM)は、概念的理解の兆候をますます示している。
彼らの内部知識の多くは、潜伏し、ゆるやかに構造化され、アクセスや評価が難しいままである。
LLMの理解を改善するための軽量でスケーラブルな戦略として,自己問合せを提案する。
論文 参考訳(メタデータ) (2025-05-18T15:04:02Z) - Unveiling Knowledge Utilization Mechanisms in LLM-based Retrieval-Augmented Generation [77.10390725623125]
検索強化世代(RAG)は知識範囲の拡大に広く利用されている。
RAGは、オープンドメインの質問応答のような知識集約的なタスクを約束しているので、複雑なタスクやインテリジェントアシスタントへの幅広い応用は、その実用性をさらに進歩させてきた。
本稿では、RAGが内部(パラメトリック)知識と外部(検索)知識を統合する本質的なメカニズムを体系的に検討する。
論文 参考訳(メタデータ) (2025-05-17T13:13:13Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model [54.14155564592936]
大規模言語モデル(MoRE-LLM)によるルールエキスパートの混合を提案する。
MoRE-LLMは、トレーニング中の局所的なルールベースのサロゲートの発見と、それらの分類タスクの利用を操縦する。
LLMはルールを修正・コンテキスト化することで、ルールのドメイン知識の整合性を高める役割を担います。
論文 参考訳(メタデータ) (2025-03-26T11:09:21Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Neurosymbolic AI approach to Attribution in Large Language Models [5.3454230926797734]
ニューロシンボリックAI(NesyAI)は、ニューラルネットワークの強みと構造化されたシンボリック推論を組み合わせる。
本稿では、NesyAIフレームワークが既存の属性モデルをどのように拡張し、より信頼性が高く、解釈可能で、適応可能なシステムを提供するかを検討する。
論文 参考訳(メタデータ) (2024-09-30T02:20:36Z) - Networks of Networks: Complexity Class Principles Applied to Compound AI Systems Design [63.24275274981911]
多くの言語モデル推論コールからなる複合AIシステムは、ますます採用されている。
本研究では,提案した回答の生成と正当性検証の区別を中心に,ネットワークネットワーク(NoN)と呼ばれるシステムを構築した。
我々は,Kジェネレータを備えた検証器ベースの判定器NoNを導入し,"Best-of-K"あるいは"judge-based"複合AIシステムのインスタンス化を行う。
論文 参考訳(メタデータ) (2024-07-23T20:40:37Z) - Verbalized Probabilistic Graphical Modeling [8.524824578426962]
本稿では,自然言語における確率的グラフモデル (PGM) の重要な原理をシミュレートするために,動詞型確率的グラフィカルモデリング (vPGM) を提案する。
vPGMは専門家主導のモデル設計をバイパスし、仮定やデータ不足のシナリオに適している。
以上の結果から,本モデルは信頼性校正とテキスト生成品質を効果的に向上させることが示唆された。
論文 参考訳(メタデータ) (2024-06-08T16:35:31Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - LB-KBQA: Large-language-model and BERT based Knowledge-Based Question
and Answering System [7.626368876843794]
本稿では,Large Language Model(LLM)とBERT(LB-KBQA)に基づく新しいKBQAシステムを提案する。
生成AIの助けを借りて,提案手法は新たに出現した意図を検知し,新たな知識を得ることができた。
ファイナンシャルドメイン質問応答の実験では,本モデルの方が優れた効果を示した。
論文 参考訳(メタデータ) (2024-02-05T16:47:17Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
我々は、OK-VQAのオープンドメインマルチモーダルタスクにおいて、最先端の強力な結果をもたらす新しいモデルである知識拡張トランスフォーマー(KAT)を提案する。
提案手法は,エンド・ツー・エンドのエンコーダ・デコーダアーキテクチャにおいて暗黙的かつ明示的な知識を統合しつつ,回答生成時に両知識源を共同で推論する。
我々の分析では、モデル予測の解釈可能性の向上に、明示的な知識統合のさらなる利点が見られる。
論文 参考訳(メタデータ) (2021-12-16T04:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。