MolPIF: A Parameter Interpolation Flow Model for Molecule Generation
- URL: http://arxiv.org/abs/2507.13762v3
- Date: Thu, 31 Jul 2025 01:38:49 GMT
- Title: MolPIF: A Parameter Interpolation Flow Model for Molecule Generation
- Authors: Yaowei Jin, Junjie Wang, Wenkai Xiang, Duanhua Cao, Dan Teng, Zhehuan Fan, Jiacheng Xiong, Xia Sheng, Chuanlong Zeng, Duo An, Mingyue Zheng, Shuangjia Zheng, Qian Shi,
- Abstract summary: We propose a novel Interpolation Flow model (named PIF) with detailed theoretical foundation, training, and inference procedures.<n>We then develop MolPIF for structure-based drug design, demonstrating its superior performance across diverse metrics compared to baselines.<n>This work validates the effectiveness of parameter-space-based generative modeling paradigm for molecules and offers new perspectives for model design.
- Score: 9.122719535880355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in deep learning for molecular generation show promise in accelerating drug discovery. Bayesian Flow Networks (BFNs) have recently shown impressive performance across diverse chemical tasks, with their success often ascribed to the paradigm of modeling in a low-variance parameter space. However, the Bayesian inference-based strategy imposes limitations on designing more flexible distribution transformation pathways, making it challenging to adapt to diverse data distributions and varied task requirements. Furthermore, the potential for simpler, more efficient parameter-space-based models is unexplored. To address this, we propose a novel Parameter Interpolation Flow model (named PIF) with detailed theoretical foundation, training, and inference procedures. We then develop MolPIF for structure-based drug design, demonstrating its superior performance across diverse metrics compared to baselines. This work validates the effectiveness of parameter-space-based generative modeling paradigm for molecules and offers new perspectives for model design.
Related papers
- Iterative Distillation for Reward-Guided Fine-Tuning of Diffusion Models in Biomolecular Design [53.93023688824764]
We address the problem of fine-tuning diffusion models for reward-guided generation in biomolecular design.<n>We propose an iterative distillation-based fine-tuning framework that enables diffusion models to optimize for arbitrary reward functions.<n>Our off-policy formulation, combined with KL divergence minimization, enhances training stability and sample efficiency compared to existing RL-based methods.
arXiv Detail & Related papers (2025-07-01T05:55:28Z) - Unified Guidance for Geometry-Conditioned Molecular Generation [41.94578826467316]
We introduce UniGuide, a framework for controlled geometric guidance of unconditional diffusion models.<n>We show how applications such as structure-based, fragment-based, and ligand-based drug design are formulated in the UniGuide framework.
arXiv Detail & Related papers (2025-01-05T12:58:01Z) - Exploring Discrete Flow Matching for 3D De Novo Molecule Generation [0.0]
Flow matching is a recently proposed generative modeling framework that has achieved impressive performance on a variety of tasks.
We present FlowMol-CTMC, an open-source model that achieves state of the art performance for 3D de novo design with fewer learnable parameters than existing methods.
arXiv Detail & Related papers (2024-11-25T18:27:39Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Enhancing Generative Molecular Design via Uncertainty-guided Fine-tuning of Variational Autoencoders [2.0701439270461184]
A critical challenge for pre-trained generative molecular design models is to fine-tune them to be better suited for downstream design tasks.
In this work, we propose a novel approach for a generative uncertainty decoder (VAE)-based GMD model through performance feedback in an active setting.
arXiv Detail & Related papers (2024-05-31T02:00:25Z) - Leveraging Active Subspaces to Capture Epistemic Model Uncertainty in Deep Generative Models for Molecular Design [2.0701439270461184]
generative molecular design models have seen fewer efforts on uncertainty quantification (UQ) due to computational challenges in Bayesian inference posed by their large number of parameters.
In this work, we focus on the junction-tree variational autoencoder (JT-VAE), a popular model for generative molecular design, and address this issue by leveraging the low dimensional active subspace to capture the uncertainty in the model parameters.
arXiv Detail & Related papers (2024-04-30T21:10:51Z) - Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling [2.1779479916071067]
We introduce a novel framework that enhances diffusion models by supporting a broader range of forward processes.<n>We also propose a novel parameterization technique for learning the forward process.<n>Results underscore NFDM's versatility and its potential for a wide range of applications.
arXiv Detail & Related papers (2024-04-19T15:10:54Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.