Unified Guidance for Geometry-Conditioned Molecular Generation
- URL: http://arxiv.org/abs/2501.02526v1
- Date: Sun, 05 Jan 2025 12:58:01 GMT
- Title: Unified Guidance for Geometry-Conditioned Molecular Generation
- Authors: Sirine Ayadi, Leon Hetzel, Johanna Sommer, Fabian Theis, Stephan Günnemann,
- Abstract summary: We introduce UniGuide, a framework for controlled geometric guidance of unconditional diffusion models.
We show how applications such as structure-based, fragment-based, and ligand-based drug design are formulated in the UniGuide framework.
- Score: 41.94578826467316
- License:
- Abstract: Effectively designing molecular geometries is essential to advancing pharmaceutical innovations, a domain, which has experienced great attention through the success of generative models and, in particular, diffusion models. However, current molecular diffusion models are tailored towards a specific downstream task and lack adaptability. We introduce UniGuide, a framework for controlled geometric guidance of unconditional diffusion models that allows flexible conditioning during inference without the requirement of extra training or networks. We show how applications such as structure-based, fragment-based, and ligand-based drug design are formulated in the UniGuide framework and demonstrate on-par or superior performance compared to specialised models. Offering a more versatile approach, UniGuide has the potential to streamline the development of molecular generative models, allowing them to be readily used in diverse application scenarios.
Related papers
- Exploring Discrete Flow Matching for 3D De Novo Molecule Generation [0.0]
Flow matching is a recently proposed generative modeling framework that has achieved impressive performance on a variety of tasks.
We present FlowMol-CTMC, an open-source model that achieves state of the art performance for 3D de novo design with fewer learnable parameters than existing methods.
arXiv Detail & Related papers (2024-11-25T18:27:39Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - ControlMol: Adding Substructure Control To Molecule Diffusion Models [2.8372258697984627]
We propose a two-stage training approach, consisting of condition learning and condition optimization.
In our experiments, only trained on randomly partitioned sub-structure data, the proposed method outperforms previous techniques by generating more valid and diverse molecules.
arXiv Detail & Related papers (2024-04-22T14:36:19Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure [0.0]
Diffusion generative models operate directly on 3D molecular structures.
We present a novel GNN-based architecture for learning latent representations of molecular structure.
Our model achieves comparable performance to one with an all-atom protein representation while exhibiting a 3-fold reduction in inference time.
arXiv Detail & Related papers (2023-11-22T15:32:31Z) - Bidirectional Generation of Structure and Properties Through a Single
Molecular Foundation Model [44.60174246341653]
We present a novel multimodal molecular pre-trained model that incorporates the modalities of structure and biochemical properties.
Our proposed model pipeline of data handling and training objectives aligns the structure/property features in a common embedding space.
These contributions emerge synergistic knowledge, allowing us to tackle both multimodal and unimodal downstream tasks through a single model.
arXiv Detail & Related papers (2022-11-19T05:16:08Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.