SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
- URL: http://arxiv.org/abs/2507.13812v1
- Date: Fri, 18 Jul 2025 10:44:22 GMT
- Title: SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
- Authors: Yingying Zhang, Lixiang Ru, Kang Wu, Lei Yu, Lei Liang, Yansheng Li, Jingdong Chen,
- Abstract summary: Multi-modal remote sensing foundation model (MM-RSFM) has significantly advanced various Earth observation tasks.<n>We present SkySense V2, a unified MM-RSFM that employs a single transformer backbone to handle multiple modalities.
- Score: 32.58127653020506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The multi-modal remote sensing foundation model (MM-RSFM) has significantly advanced various Earth observation tasks, such as urban planning, environmental monitoring, and natural disaster management. However, most existing approaches generally require the training of separate backbone networks for each data modality, leading to redundancy and inefficient parameter utilization. Moreover, prevalent pre-training methods typically apply self-supervised learning (SSL) techniques from natural images without adequately accommodating the characteristics of remote sensing (RS) images, such as the complicated semantic distribution within a single RS image. In this work, we present SkySense V2, a unified MM-RSFM that employs a single transformer backbone to handle multiple modalities. This backbone is pre-trained with a novel SSL strategy tailored to the distinct traits of RS data. In particular, SkySense V2 incorporates an innovative adaptive patch merging module and learnable modality prompt tokens to address challenges related to varying resolutions and limited feature diversity across modalities. In additional, we incorporate the mixture of experts (MoE) module to further enhance the performance of the foundation model. SkySense V2 demonstrates impressive generalization abilities through an extensive evaluation involving 16 datasets over 7 tasks, outperforming SkySense by an average of 1.8 points.
Related papers
- RingMo-Agent: A Unified Remote Sensing Foundation Model for Multi-Platform and Multi-Modal Reasoning [15.670921552151775]
RingMo-Agent is designed to handle multi-modal and multi-platform data.<n>It is supported by a large-scale vision-language dataset named RS-VL3M.<n>It proves effective in both visual understanding and sophisticated analytical tasks.
arXiv Detail & Related papers (2025-07-28T12:39:33Z) - MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings [75.0617088717528]
MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
arXiv Detail & Related papers (2025-06-29T06:41:00Z) - RingMoE: Mixture-of-Modality-Experts Multi-Modal Foundation Models for Universal Remote Sensing Image Interpretation [24.48561340129571]
RingMoE is a unified RS foundation model with 14.7 billion parameters, pre-trained on 400 million multi-modal RS images from nine satellites.<n>It has been deployed and trialed in multiple sectors, including emergency response, land management, marine sciences, and urban planning.
arXiv Detail & Related papers (2025-04-04T04:47:54Z) - SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
This paper introduces a new task called Multi-Modal datasets and Multi-Task Object Detection (M2Det) for remote sensing.<n>It is designed to accurately detect horizontal or oriented objects from any sensor modality.<n>This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization.
arXiv Detail & Related papers (2024-12-30T02:47:51Z) - RS-MoE: A Vision-Language Model with Mixture of Experts for Remote Sensing Image Captioning and Visual Question Answering [23.699493284403967]
This paper proposes RS-MoE, a first Mixture of Expert based VLM specifically customized for remote sensing domain.<n>Unlike traditional MoE models, the core of RS-MoE is the MoE Block, which incorporates a novel Instruction Router and multiple lightweight Large Language Models (LLMs) as expert models.<n>We show that our model achieves state-of-the-art performance in generating precise and contextually relevant captions.
arXiv Detail & Related papers (2024-11-03T15:05:49Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
We propose a novel multi-modal visual prompt tracking model based on a universal bi-directional adapter.
We develop a simple but effective light feature adapter to transfer modality-specific information from one modality to another.
Our model achieves superior tracking performance in comparison with both the full fine-tuning methods and the prompt learning-based methods.
arXiv Detail & Related papers (2023-12-17T05:27:31Z) - SkySense: A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery [35.550999964460466]
We present SkySense, a generic billion-scale model, pre-trained on a curated multi-modal Remote Sensing dataset with 21.5 million temporal sequences.
To our best knowledge, SkySense is the largest Multi-Modal to date, whose modules can be flexibly combined or used individually to accommodate various tasks.
arXiv Detail & Related papers (2023-12-15T09:57:21Z) - FM-ViT: Flexible Modal Vision Transformers for Face Anti-Spoofing [88.6654909354382]
We present a pure transformer-based framework, dubbed the Flexible Modal Vision Transformer (FM-ViT) for face anti-spoofing.
FM-ViT can flexibly target any single-modal (i.e., RGB) attack scenarios with the help of available multi-modal data.
Experiments demonstrate that the single model trained based on FM-ViT can not only flexibly evaluate different modal samples, but also outperforms existing single-modal frameworks by a large margin.
arXiv Detail & Related papers (2023-05-05T04:28:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.