A Survey of Dimension Estimation Methods
- URL: http://arxiv.org/abs/2507.13887v1
- Date: Fri, 18 Jul 2025 13:05:42 GMT
- Title: A Survey of Dimension Estimation Methods
- Authors: James A. D. Binnie, Paweł Dłotko, John Harvey, Jakub Malinowski, Ka Man Yim,
- Abstract summary: It is important to understand the real dimension of the data, hence the complexity of the dataset at hand.<n>This survey reviews a wide range of dimension estimation methods, categorising them by the geometric information they exploit.<n>The paper evaluates the performance of these methods, as well as investigating varying responses to curvature and noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is a standard assumption that datasets in high dimension have an internal structure which means that they in fact lie on, or near, subsets of a lower dimension. In many instances it is important to understand the real dimension of the data, hence the complexity of the dataset at hand. A great variety of dimension estimators have been developed to find the intrinsic dimension of the data but there is little guidance on how to reliably use these estimators. This survey reviews a wide range of dimension estimation methods, categorising them by the geometric information they exploit: tangential estimators which detect a local affine structure; parametric estimators which rely on dimension-dependent probability distributions; and estimators which use topological or metric invariants. The paper evaluates the performance of these methods, as well as investigating varying responses to curvature and noise. Key issues addressed include robustness to hyperparameter selection, sample size requirements, accuracy in high dimensions, precision, and performance on non-linear geometries. In identifying the best hyperparameters for benchmark datasets, overfitting is frequent, indicating that many estimators may not generalise well beyond the datasets on which they have been tested.
Related papers
- (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - Adversarial Estimation of Topological Dimension with Harmonic Score Maps [7.34158170612151]
We show that it is possible to retrieve the topological dimension of the manifold learned by the score map.
We then introduce a novel method to measure the learned manifold's topological dimension using adversarial attacks.
arXiv Detail & Related papers (2023-12-11T22:29:54Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
In this work, we aim to introduce the first highly non-supervised dimensionality reduction performance metric.
To test its feasibility, this metric has been used to evaluate the performance of the most commonly used dimension reduction algorithms.
A new parameterized problem instance generator has been constructed in the form of a function generator.
arXiv Detail & Related papers (2023-03-17T11:59:33Z) - Intrinsic Dimensionality Estimation within Tight Localities: A
Theoretical and Experimental Analysis [0.0]
We propose a local ID estimation strategy stable even for tight' localities consisting of as few as 20 sample points.
Our experimental results show that our proposed estimation technique can achieve notably smaller variance, while maintaining comparable levels of bias, at much smaller sample sizes than state-of-the-art estimators.
arXiv Detail & Related papers (2022-09-29T00:00:11Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - A geometric framework for outlier detection in high-dimensional data [0.0]
Outlier or anomaly detection is an important task in data analysis.
We provide a framework that exploits the metric structure of a data set.
We show that exploiting this structure significantly improves the detection of outlying observations in high-dimensional data.
arXiv Detail & Related papers (2022-07-01T12:07:51Z) - Semi-Supervised Quantile Estimation: Robust and Efficient Inference in High Dimensional Settings [0.5735035463793009]
We consider quantile estimation in a semi-supervised setting, characterized by two available data sets.
We propose a family of semi-supervised estimators for the response quantile(s) based on the two data sets.
arXiv Detail & Related papers (2022-01-25T10:02:23Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
We propose to use a nearest-neighbor-based $gamma$-divergence estimator as a data discrepancy measure.
Our method achieves significantly higher robustness than existing discrepancy measures.
arXiv Detail & Related papers (2020-06-13T06:09:27Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Adaptive Discrete Smoothing for High-Dimensional and Nonlinear Panel
Data [4.550919471480445]
We develop a data-driven smoothing technique for high-dimensional and non-linear panel data models.
The weights are determined by a data-driven way and depend on the similarity between the corresponding functions.
We conduct a simulation study which shows that the prediction can be greatly improved by using our estimator.
arXiv Detail & Related papers (2019-12-30T09:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.