The Emotion-Memory Link: Do Memorability Annotations Matter for Intelligent Systems?
- URL: http://arxiv.org/abs/2507.14084v1
- Date: Fri, 18 Jul 2025 17:06:34 GMT
- Title: The Emotion-Memory Link: Do Memorability Annotations Matter for Intelligent Systems?
- Authors: Maria Tsfasman, Ramin Ghorbani, Catholijn M. Jonker, Bernd Dudzik,
- Abstract summary: We investigate the relationship between perceived group emotions (Pleasure-Arousal) and group memorability in the context of conversational interactions.<n>Our results show that the observed relationship between affect and memorability annotations cannot be reliably distinguished from what might be expected under random chance.
- Score: 1.960641679592198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans have a selective memory, remembering relevant episodes and forgetting the less relevant information. Possessing awareness of event memorability for a user could help intelligent systems in more accurate user modelling, especially for such applications as meeting support systems, memory augmentation, and meeting summarisation. Emotion recognition has been widely studied, since emotions are thought to signal moments of high personal relevance to users. The emotional experience of situations and their memorability have traditionally been considered to be closely tied to one another: moments that are experienced as highly emotional are considered to also be highly memorable. This relationship suggests that emotional annotations could serve as proxies for memorability. However, existing emotion recognition systems rely heavily on third-party annotations, which may not accurately represent the first-person experience of emotional relevance and memorability. This is why, in this study, we empirically examine the relationship between perceived group emotions (Pleasure-Arousal) and group memorability in the context of conversational interactions. Our investigation involves continuous time-based annotations of both emotions and memorability in dynamic, unstructured group settings, approximating conditions of real-world conversational AI applications such as online meeting support systems. Our results show that the observed relationship between affect and memorability annotations cannot be reliably distinguished from what might be expected under random chance. We discuss the implications of this surprising finding for the development and applications of Affective Computing technology. In addition, we contextualise our findings in broader discourses in the Affective Computing and point out important targets for future research efforts.
Related papers
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.<n>We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.<n>Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.<n>Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - Modelling Emotions in Face-to-Face Setting: The Interplay of Eye-Tracking, Personality, and Temporal Dynamics [1.4645774851707578]
In this study, we showcase how integrating eye-tracking data, temporal dynamics, and personality traits can substantially enhance the detection of both perceived and felt emotions.<n>Our findings inform the design of future affective computing and human-agent systems.
arXiv Detail & Related papers (2025-03-18T13:15:32Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
We propose a Dynamic Causal Disentanglement Model based on hidden variable separation.
This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions.
Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables.
arXiv Detail & Related papers (2023-09-13T12:58:09Z) - Learning Emotion Representations from Verbal and Nonverbal Communication [7.747924294389427]
We present EmotionCLIP, the first pre-training paradigm to extract visual emotion representations from verbal and nonverbal communication.
We guide EmotionCLIP to attend to nonverbal emotion cues through subject-aware context encoding and verbal emotion cues using sentiment-guided contrastive learning.
EmotionCLIP will address the prevailing issue of data scarcity in emotion understanding, thereby fostering progress in related domains.
arXiv Detail & Related papers (2023-05-22T21:36:55Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
arXiv Detail & Related papers (2021-08-18T21:55:20Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in
Conversations [0.0]
We propose novel Contextual Reasoning Networks (DialogueCRN) to fully understand the conversational context from a cognitive perspective.
Inspired by the Cognitive Theory of Emotion, we design multi-turn reasoning modules to extract and integrate emotional clues.
The reasoning module iteratively performs an intuitive retrieving process and a conscious reasoning process, which imitates human unique cognitive thinking.
arXiv Detail & Related papers (2021-06-03T16:47:38Z) - AdCOFE: Advanced Contextual Feature Extraction in Conversations for
emotion classification [0.29360071145551075]
The proposed model of Advanced Contextual Feature Extraction (AdCOFE) addresses these issues.
Experiments on the Emotion recognition in conversations dataset show that AdCOFE is beneficial in capturing emotions in conversations.
arXiv Detail & Related papers (2021-04-09T17:58:19Z) - Infusing Multi-Source Knowledge with Heterogeneous Graph Neural Network
for Emotional Conversation Generation [25.808037796936766]
In a real-world conversation, we instinctively perceive emotions from multi-source information.
We propose a heterogeneous graph-based model for emotional conversation generation.
Experimental results show that our model can effectively perceive emotions from multi-source knowledge.
arXiv Detail & Related papers (2020-12-09T06:09:31Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.