Generative AI-Driven High-Fidelity Human Motion Simulation
- URL: http://arxiv.org/abs/2507.14097v1
- Date: Fri, 18 Jul 2025 17:24:50 GMT
- Title: Generative AI-Driven High-Fidelity Human Motion Simulation
- Authors: Hari Iyer, Neel Macwan, Atharva Jitendra Hude, Heejin Jeong, Shenghan Guo,
- Abstract summary: Generative-AI-Enabled HMS (G-AI-HMS) integrates text-to-text and text-to-motion models to enhance simulation quality for physical tasks.<n> Posture estimation algorithms are applied to real-time videos to extract joint landmarks, and motion similarity metrics are used to compare them with AI-enhanced sequences.
- Score: 2.565510978670772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human motion simulation (HMS) supports cost-effective evaluation of worker behavior, safety, and productivity in industrial tasks. However, existing methods often suffer from low motion fidelity. This study introduces Generative-AI-Enabled HMS (G-AI-HMS), which integrates text-to-text and text-to-motion models to enhance simulation quality for physical tasks. G-AI-HMS tackles two key challenges: (1) translating task descriptions into motion-aware language using Large Language Models aligned with MotionGPT's training vocabulary, and (2) validating AI-enhanced motions against real human movements using computer vision. Posture estimation algorithms are applied to real-time videos to extract joint landmarks, and motion similarity metrics are used to compare them with AI-enhanced sequences. In a case study involving eight tasks, the AI-enhanced motions showed lower error than human created descriptions in most scenarios, performing better in six tasks based on spatial accuracy, four tasks based on alignment after pose normalization, and seven tasks based on overall temporal similarity. Statistical analysis showed that AI-enhanced prompts significantly (p $<$ 0.0001) reduced joint error and temporal misalignment while retaining comparable posture accuracy.
Related papers
- SSSUMO: Real-Time Semi-Supervised Submovement Decomposition [0.6499759302108926]
Submovement analysis offers valuable insights into motor control.<n>Existing methods struggle with reconstruction accuracy, computational cost, and validation.<n>We address these challenges using a semi-supervised learning framework.
arXiv Detail & Related papers (2025-07-08T21:26:25Z) - Real-Time Inverse Kinematics for Generating Multi-Constrained Movements of Virtual Human Characters [0.0]
This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation.<n>By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits.<n>Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods.
arXiv Detail & Related papers (2025-07-01T14:26:30Z) - UniHM: Universal Human Motion Generation with Object Interactions in Indoor Scenes [26.71077287710599]
We propose UniHM, a unified motion language model that leverages diffusion-based generation for scene-aware human motion.<n>UniHM is the first framework to support both Text-to-Motion and Text-to-Human-Object Interaction (HOI) in complex 3D scenes.<n>Our approach introduces three key contributions: (1) a mixed-motion representation that fuses continuous 6DoF motion with discrete local motion tokens to improve motion realism; (2) a novel Look-Up-Free Quantization VAE that surpasses traditional VQ-VAEs in both reconstruction accuracy and generative performance; and (3) an enriched version of
arXiv Detail & Related papers (2025-05-19T07:02:12Z) - CASIM: Composite Aware Semantic Injection for Text to Motion Generation [15.53049009014166]
We propose a composite-aware semantic injection mechanism that learns the dynamic correspondence between text and motion tokens.<n> Experiments on HumanML3D and KIT benchmarks demonstrate that CASIM consistently improves motion quality, text-motion alignment, and retrieval scores.
arXiv Detail & Related papers (2025-02-04T07:22:07Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing [88.35145788575348]
Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing.
The lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications.
We construct a comprehensive image anomaly detection benchmark (IM-IAD), which includes 19 algorithms on seven major datasets.
arXiv Detail & Related papers (2023-01-31T01:24:45Z) - BEHAVIOR in Habitat 2.0: Simulator-Independent Logical Task Description
for Benchmarking Embodied AI Agents [31.499374840833124]
We bring a subset of BEHAVIOR activities into Habitat 2.0 to benefit from its fast simulation speed.
Inspired by the catalyzing effect that benchmarks have played in the AI fields, the community is looking for new benchmarks for embodied AI.
arXiv Detail & Related papers (2022-06-13T21:37:31Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.