UGPL: Uncertainty-Guided Progressive Learning for Evidence-Based Classification in Computed Tomography
- URL: http://arxiv.org/abs/2507.14102v1
- Date: Fri, 18 Jul 2025 17:30:56 GMT
- Title: UGPL: Uncertainty-Guided Progressive Learning for Evidence-Based Classification in Computed Tomography
- Authors: Shravan Venkatraman, Pavan Kumar S, Rakesh Raj Madavan, Chandrakala S,
- Abstract summary: Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities.<n>We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis.<n> Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate classification of computed tomography (CT) images is essential for diagnosis and treatment planning, but existing methods often struggle with the subtle and spatially diverse nature of pathological features. Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities that require focused analysis. We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis by first identifying regions of diagnostic ambiguity and then conducting detailed examination of these critical areas. Our approach employs evidential deep learning to quantify predictive uncertainty, guiding the extraction of informative patches through a non-maximum suppression mechanism that maintains spatial diversity. This progressive refinement strategy, combined with an adaptive fusion mechanism, enables UGPL to integrate both contextual information and fine-grained details. Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods, achieving improvements of 3.29%, 2.46%, and 8.08% in accuracy for kidney abnormality, lung cancer, and COVID-19 detection, respectively. Our analysis shows that the uncertainty-guided component provides substantial benefits, with performance dramatically increasing when the full progressive learning pipeline is implemented. Our code is available at: https://github.com/shravan-18/UGPL
Related papers
- Lightweight Relational Embedding in Task-Interpolated Few-Shot Networks for Enhanced Gastrointestinal Disease Classification [0.0]
Colon cancer detection is crucial for increasing patient survival rates.<n> colonoscopy is dependent on obtaining adequate and high-quality endoscopic images.<n>Few-Shot Learning architecture enables our model to rapidly adapt to unseen fine-grained endoscopic image patterns.<n>Our model demonstrated superior performance, achieving an accuracy of 90.1%, precision of 0.845, recall of 0.942, and an F1 score of 0.891.
arXiv Detail & Related papers (2025-05-30T16:54:51Z) - Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
We propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification.<n>By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach.<n>Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets.
arXiv Detail & Related papers (2025-04-18T15:39:46Z) - Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.<n>We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.<n>Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - The Efficacy of Semantics-Preserving Transformations in Self-Supervised Learning for Medical Ultrasound [60.80780313225093]
This study systematically investigated the impact of data augmentation and preprocessing strategies in self-supervised learning for lung ultrasound.<n>Three data augmentation pipelines were assessed: a baseline pipeline commonly used across imaging domains, a novel semantic-preserving pipeline designed for ultrasound, and a distilled set of the most effective transformations from both pipelines.
arXiv Detail & Related papers (2025-04-10T16:26:47Z) - FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification [4.148491257542209]
Few-shot learning presents a critical solution for cancer diagnosis in computational pathology.<n>A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches.<n>We introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, to enable a focused analysis of diagnostically relevant regions.
arXiv Detail & Related papers (2024-11-22T05:36:38Z) - Establishing Causal Relationship Between Whole Slide Image Predictions and Diagnostic Evidence Subregions in Deep Learning [3.5504159526793924]
Causal Inference Multiple Instance Learning (CI-MIL) uses out-of-distribution generalization to reduce the recognition confusion of sub-images.<n>CI-MIL exhibits superior interpretability, as its selected regions demonstrate high consistency with ground truth annotations.
arXiv Detail & Related papers (2024-07-24T11:00:08Z) - Semantics-Aware Attention Guidance for Diagnosing Whole Slide Images [5.856390270089738]
We introduce a novel framework named Semantics-Aware Attention Guidance (SAG)
SAG includes 1) a technique for converting diagnostically relevant entities into attention signals, and 2) a flexible attention loss that efficiently integrates semantically significant information.
Our experiments on two distinct cancer datasets demonstrate consistent improvements in accuracy, precision, and recall.
arXiv Detail & Related papers (2024-04-16T20:37:14Z) - Toward Robust Diagnosis: A Contour Attention Preserving Adversarial
Defense for COVID-19 Detection [10.953610196636784]
We propose a Contour Attention Preserving (CAP) method based on lung cavity edge extraction.
Experimental results indicate that the proposed method achieves state-of-the-art performance in multiple adversarial defense and generalization tasks.
arXiv Detail & Related papers (2022-11-30T08:01:23Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.