Toward Robust Diagnosis: A Contour Attention Preserving Adversarial
Defense for COVID-19 Detection
- URL: http://arxiv.org/abs/2211.16806v1
- Date: Wed, 30 Nov 2022 08:01:23 GMT
- Title: Toward Robust Diagnosis: A Contour Attention Preserving Adversarial
Defense for COVID-19 Detection
- Authors: Kun Xiang, Xing Zhang, Jinwen She, Jinpeng Liu, Haohan Wang, Shiqi
Deng, Shancheng Jiang
- Abstract summary: We propose a Contour Attention Preserving (CAP) method based on lung cavity edge extraction.
Experimental results indicate that the proposed method achieves state-of-the-art performance in multiple adversarial defense and generalization tasks.
- Score: 10.953610196636784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the COVID-19 pandemic puts pressure on healthcare systems worldwide, the
computed tomography image based AI diagnostic system has become a sustainable
solution for early diagnosis. However, the model-wise vulnerability under
adversarial perturbation hinders its deployment in practical situation. The
existing adversarial training strategies are difficult to generalized into
medical imaging field challenged by complex medical texture features. To
overcome this challenge, we propose a Contour Attention Preserving (CAP) method
based on lung cavity edge extraction. The contour prior features are injected
to attention layer via a parameter regularization and we optimize the robust
empirical risk with hybrid distance metric. We then introduce a new
cross-nation CT scan dataset to evaluate the generalization capability of the
adversarial robustness under distribution shift. Experimental results indicate
that the proposed method achieves state-of-the-art performance in multiple
adversarial defense and generalization tasks. The code and dataset are
available at https://github.com/Quinn777/CAP.
Related papers
- Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
We have developed an explainable AI methodology tailored for medical imaging.
We employ a Convolutional Neural Network (CNN) that analyzes MRI scans across both image and frequency domains.
This approach not only enhances early training efficiency but also deepens our understanding of how additional features impact the model predictions.
arXiv Detail & Related papers (2024-09-20T15:43:26Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate
Detection [12.669734891001667]
Diabetic retinopathy (DR) is a leading global cause of blindness.
Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss.
We present a novel supervised contrastive learning framework to optimize hard exudate segmentation.
arXiv Detail & Related papers (2023-02-22T17:39:00Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - SSMD: Semi-Supervised Medical Image Detection with Adaptive Consistency
and Heterogeneous Perturbation [47.001609080453335]
We propose a novel Semi-Supervised Medical image Detector (SSMD)
The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent.
Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings.
arXiv Detail & Related papers (2021-06-03T01:59:50Z) - Ultrasound Diagnosis of COVID-19: Robustness and Explainability [1.2183405753834557]
Diagnosis of COVID-19 at point of care is vital to the containment of the global pandemic.
Previous work has used public datasets of POCUS videos to train an AI model for diagnosis that obtains high sensitivity.
Due to the high stakes application we propose the use of robust and explainable techniques.
arXiv Detail & Related papers (2020-11-30T20:26:39Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.