An Adversarial-Driven Experimental Study on Deep Learning for RF Fingerprinting
- URL: http://arxiv.org/abs/2507.14109v1
- Date: Fri, 18 Jul 2025 17:42:20 GMT
- Title: An Adversarial-Driven Experimental Study on Deep Learning for RF Fingerprinting
- Authors: Xinyu Cao, Bimal Adhikari, Shangqing Zhao, Jingxian Wu, Yanjun Pan,
- Abstract summary: Radio frequency (RF) fingerprinting has emerged as a promising physical-layer device identification mechanism.<n>Deep learning (DL) methods have demonstrated state-of-the-art performance in this domain.<n>We show that training DL models on raw received signals causes the models to entangle RF fingerprints with environmental and signal-pattern features.
- Score: 6.503988096115075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radio frequency (RF) fingerprinting, which extracts unique hardware imperfections of radio devices, has emerged as a promising physical-layer device identification mechanism in zero trust architectures and beyond 5G networks. In particular, deep learning (DL) methods have demonstrated state-of-the-art performance in this domain. However, existing approaches have primarily focused on enhancing system robustness against temporal and spatial variations in wireless environments, while the security vulnerabilities of these DL-based approaches have often been overlooked. In this work, we systematically investigate the security risks of DL-based RF fingerprinting systems through an adversarial-driven experimental analysis. We observe a consistent misclassification behavior for DL models under domain shifts, where a device is frequently misclassified as another specific one. Our analysis based on extensive real-world experiments demonstrates that this behavior can be exploited as an effective backdoor to enable external attackers to intrude into the system. Furthermore, we show that training DL models on raw received signals causes the models to entangle RF fingerprints with environmental and signal-pattern features, creating additional attack vectors that cannot be mitigated solely through post-processing security methods such as confidence thresholds.
Related papers
- Adversarial Attacks on Deep Learning-Based False Data Injection Detection in Differential Relays [3.4061238650474666]
This paper demonstrates that adversarial attacks, carefully crafted FDIAs, can evade existing Deep Learning-based Schemes (DLSs) used for False Data Injection Attacks (FDIAs) in smart grids.<n>We propose a novel adversarial attack framework, utilizing the Fast Gradient Sign Method, which exploits DLS vulnerabilities.<n>Our results highlight the significant threat posed by adversarial attacks to DLS-based FDIA detection, underscore the necessity for robust cybersecurity measures in smart grids, and demonstrate the effectiveness of adversarial training in enhancing model robustness against adversarial FDIAs.
arXiv Detail & Related papers (2025-06-24T04:22:26Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
This work investigates the vulnerabilities of security-enhancing diffusion models.
We demonstrate that these models are highly susceptible to DIFF2, a simple yet effective backdoor attack.
Case studies show that DIFF2 can significantly reduce both post-purification and certified accuracy across benchmark datasets and models.
arXiv Detail & Related papers (2024-06-14T02:39:43Z) - Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
We propose a novel approach for enhancing the performance of an NIDS through the integration of Generative Adversarial Networks (GANs)
GANs generate synthetic network traffic data that closely mimics real-world network behavior.
Our findings show that the integration of GANs into NIDS can lead to enhancements in intrusion detection performance for attacks with limited training data.
arXiv Detail & Related papers (2024-04-11T04:01:15Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on industrial control systems.
The framework has a hybrid design that combines a variational autoencoder (VAE), a recurrent neural network (RNN), and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2023-10-10T19:07:53Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
We propose an enhancement to an existing few-shot weakly-supervised deep learning anomaly detection framework.
This framework incorporates data augmentation, representation learning and ordinal regression.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2023-04-15T04:37:54Z) - One-shot Generative Distribution Matching for Augmented RF-based UAV Identification [0.0]
This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments.
The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective.
One-shot generative methods for augmenting transformed RF signals offer a significant improvement in UAV identification.
arXiv Detail & Related papers (2023-01-20T02:35:43Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.