Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks
- URL: http://arxiv.org/abs/2404.07464v1
- Date: Thu, 11 Apr 2024 04:01:15 GMT
- Title: Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks
- Authors: Xinxing Zhao, Kar Wai Fok, Vrizlynn L. L. Thing,
- Abstract summary: We propose a novel approach for enhancing the performance of an NIDS through the integration of Generative Adversarial Networks (GANs)
GANs generate synthetic network traffic data that closely mimics real-world network behavior.
Our findings show that the integration of GANs into NIDS can lead to enhancements in intrusion detection performance for attacks with limited training data.
- Score: 0.25163931116642785
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Network intrusion detection systems (NIDS) play a pivotal role in safeguarding critical digital infrastructures against cyber threats. Machine learning-based detection models applied in NIDS are prevalent today. However, the effectiveness of these machine learning-based models is often limited by the evolving and sophisticated nature of intrusion techniques as well as the lack of diverse and updated training samples. In this research, a novel approach for enhancing the performance of an NIDS through the integration of Generative Adversarial Networks (GANs) is proposed. By harnessing the power of GANs in generating synthetic network traffic data that closely mimics real-world network behavior, we address a key challenge associated with NIDS training datasets, which is the data scarcity. Three distinct GAN models (Vanilla GAN, Wasserstein GAN and Conditional Tabular GAN) are implemented in this work to generate authentic network traffic patterns specifically tailored to represent the anomalous activity. We demonstrate how this synthetic data resampling technique can significantly improve the performance of the NIDS model for detecting such activity. By conducting comprehensive experiments using the CIC-IDS2017 benchmark dataset, augmented with GAN-generated data, we offer empirical evidence that shows the effectiveness of our proposed approach. Our findings show that the integration of GANs into NIDS can lead to enhancements in intrusion detection performance for attacks with limited training data, making it a promising avenue for bolstering the cybersecurity posture of organizations in an increasingly interconnected and vulnerable digital landscape.
Related papers
- Intrusion Detection in Heterogeneous Networks with Domain-Adaptive Multi-Modal Learning [1.03590082373586]
We develop a deep neural model that integrates multi-modal learning with domain adaptation techniques for classification.<n>Our model processes data from diverse sources in a sequential cyclic manner, allowing it to learn from multiple datasets and adapt to varying feature spaces.<n> Experimental results demonstrate that our proposed model significantly outperforms baseline neural models in classifying network intrusions.
arXiv Detail & Related papers (2025-08-05T14:46:03Z) - Intrusion Detection System Using Deep Learning for Network Security [0.6554326244334868]
This paper proposes an experimental evaluation of IDS models based on deep learning techniques.<n>We focus on the classification of network traffic into malicious and benign categories.<n>Among the tested models, the best achieved an accuracy of 96 percent.
arXiv Detail & Related papers (2025-05-09T06:04:58Z) - Feature Selection via GANs (GANFS): Enhancing Machine Learning Models for DDoS Mitigation [0.0]
We introduce a novel Generative Adversarial Network-based Feature Selection (GANFS) method for detecting Distributed Denial of Service (DDoS) attacks.<n>By training a GAN exclusively on attack traffic, GANFS effectively ranks feature importance without relying on full supervision.<n>Results point to the potential of integrating generative learning models into cybersecurity pipelines to build more adaptive and scalable detection systems.
arXiv Detail & Related papers (2025-04-21T20:27:33Z) - Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches [35.431340001608476]
This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning.
It aims to tackle the challenges posed by small-sample data in fields such as drug discovery, target recognition, and malicious traffic detection.
Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning.
arXiv Detail & Related papers (2024-11-25T16:51:11Z) - Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study [59.780800481241066]
Generative Artificial Intelligence (GenAI) can be an effective alternative to wireless data augmentation.
This article explores the potential and effectiveness of GenAI-driven data augmentation in wireless networks.
We propose a general generative diffusion model-based data augmentation framework for Wi-Fi gesture recognition.
arXiv Detail & Related papers (2024-11-13T05:15:25Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - KiNETGAN: Enabling Distributed Network Intrusion Detection through Knowledge-Infused Synthetic Data Generation [0.0]
We propose a knowledge-infused Generative Adversarial Network for generating synthetic network activity data (KiNETGAN)
Our approach enhances the resilience of distributed intrusion detection while addressing privacy concerns.
arXiv Detail & Related papers (2024-05-26T08:02:02Z) - Grid Monitoring with Synchro-Waveform and AI Foundation Model Technologies [41.994460245857404]
This article advocates for the development of a next-generation grid monitoring and control system designed for future grids dominated by inverter-based resources.
We develop a physics-based AI foundation model with high-resolution synchro-waveform measurement technology to enhance grid resilience and reduce economic losses from outages.
arXiv Detail & Related papers (2024-03-11T17:28:46Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Advancing DDoS Attack Detection: A Synergistic Approach Using Deep
Residual Neural Networks and Synthetic Oversampling [2.988269372716689]
We introduce an enhanced approach for DDoS attack detection by leveraging the capabilities of Deep Residual Neural Networks (ResNets)
We balance the representation of benign and malicious data points, enabling the model to better discern intricate patterns indicative of an attack.
Experimental results on a real-world dataset demonstrate that our approach achieves an accuracy of 99.98%, significantly outperforming traditional methods.
arXiv Detail & Related papers (2024-01-06T03:03:52Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - An Intrusion Detection System based on Deep Belief Networks [1.535077825808595]
We develop and evaluate the performance of DBN on detecting cyber-attacks within a network of connected devices.
Our proposed DBN approach shows competitive and promising results, with significant improvement on the detection of attacks underrepresented in the training dataset.
arXiv Detail & Related papers (2022-07-05T15:38:24Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - Robust Self-Ensembling Network for Hyperspectral Image Classification [38.84831094095329]
We propose a robust self-ensembling network (RSEN) to address this problem.
The proposed RSEN consists of twoworks including a base network and an ensemble network.
We show that the proposed algorithm can yield competitive performance compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-08T13:33:14Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Towards Robust Neural Networks via Orthogonal Diversity [30.77473391842894]
A series of methods represented by the adversarial training and its variants have proven as one of the most effective techniques in enhancing the Deep Neural Networks robustness.
This paper proposes a novel defense that aims at augmenting the model in order to learn features that are adaptive to diverse inputs, including adversarial examples.
In this way, the proposed DIO augments the model and enhances the robustness of DNN itself as the learned features can be corrected by these mutually-orthogonal paths.
arXiv Detail & Related papers (2020-10-23T06:40:56Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.