Auto-grader Feedback Utilization and Its Impacts: An Observational Study Across Five Community Colleges
- URL: http://arxiv.org/abs/2507.14235v1
- Date: Thu, 17 Jul 2025 10:11:59 GMT
- Title: Auto-grader Feedback Utilization and Its Impacts: An Observational Study Across Five Community Colleges
- Authors: Adam Zhang, Heather Burte, Jaromir Savelka, Christopher Bogart, Majd Sakr,
- Abstract summary: We analyze students' interactions with auto-graders in an introductory Python programming course.<n>Students checking the feedback more frequently tend to get higher scores from their programming assignments overall.<n>Our results provide evidence on auto-grader feedback's effectiveness, encourage their increased utilization, and call for future work to continue their evaluation in this age of automation.
- Score: 1.1650821883155187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated grading systems, or auto-graders, have become ubiquitous in programming education, and the way they generate feedback has become increasingly automated as well. However, there is insufficient evidence regarding auto-grader feedback's effectiveness in improving student learning outcomes, in a way that differentiates students who utilized the feedback and students who did not. In this study, we fill this critical gap. Specifically, we analyze students' interactions with auto-graders in an introductory Python programming course, offered at five community colleges in the United States. Our results show that students checking the feedback more frequently tend to get higher scores from their programming assignments overall. Our results also show that a submission that follows a student checking the feedback tends to receive a higher score than a submission that follows a student ignoring the feedback. Our results provide evidence on auto-grader feedback's effectiveness, encourage their increased utilization, and call for future work to continue their evaluation in this age of automation
Related papers
- LazyReview A Dataset for Uncovering Lazy Thinking in NLP Peer Reviews [74.87393214734114]
This work introduces LazyReview, a dataset of peer-review sentences annotated with fine-grained lazy thinking categories.<n>Large Language Models (LLMs) struggle to detect these instances in a zero-shot setting.<n> instruction-based fine-tuning on our dataset significantly boosts performance by 10-20 performance points.
arXiv Detail & Related papers (2025-04-15T10:07:33Z) - "My Grade is Wrong!": A Contestable AI Framework for Interactive Feedback in Evaluating Student Essays [6.810086342993699]
This paper introduces CAELF, a Contestable AI Empowered LLM Framework for automating interactive feedback.
CAELF allows students to query, challenge, and clarify their feedback by integrating a multi-agent system with computational argumentation.
A case study on 500 critical thinking essays with user studies demonstrates that CAELF significantly improves interactive feedback.
arXiv Detail & Related papers (2024-09-11T17:59:01Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Enhancing Students' Learning Process Through Self-Generated Tests [0.0]
This paper describes an educational experiment aimed at the promotion of students' autonomous learning.
The main idea is to make the student feel part of the evaluation process by including students' questions in the evaluation exams.
Questions uploaded by students are visible to every enrolled student as well as to each involved teacher.
arXiv Detail & Related papers (2024-03-21T09:49:33Z) - Improving the Validity of Automatically Generated Feedback via Reinforcement Learning [46.667783153759636]
We propose a framework for feedback generation that optimize both correctness and alignment using reinforcement learning (RL)<n>Specifically, we use GPT-4's annotations to create preferences over feedback pairs in an augmented dataset for training via direct preference optimization (DPO)
arXiv Detail & Related papers (2024-03-02T20:25:50Z) - PapagAI:Automated Feedback for Reflective Essays [48.4434976446053]
We present the first open-source automated feedback tool based on didactic theory and implemented as a hybrid AI system.
The main objective of our work is to enable better learning outcomes for students and to complement the teaching activities of lecturers.
arXiv Detail & Related papers (2023-07-10T11:05:51Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
Developing interactive software, such as websites or games, is a particularly engaging way to learn computer science.
Standard approaches require instructors to manually grade student-implemented interactive programs.
Online platforms that serve millions, like Code.org, are unable to provide any feedback on assignments for implementing interactive programs.
arXiv Detail & Related papers (2022-11-16T10:00:23Z) - Feedback and Engagement on an Introductory Programming Module [0.0]
We ran a study on engagement and achievement for a first year undergraduate programming module which used an online learning environment containing tasks which generate automated feedback.
We gathered quantitative data on engagement and achievement which allowed us to split the cohort into 6 groups.
We then ran interviews with students after the end of the module to produce qualitative data on perceptions of what feedback is, how useful it is, the uses made of it, and how it bears on engagement.
arXiv Detail & Related papers (2022-01-04T16:53:09Z) - An Analysis of Programming Course Evaluations Before and After the
Introduction of an Autograder [1.329950749508442]
This paper studies the answers to the standardized university evaluation questionnaires of foundational computer science courses which recently introduced autograding.
We hypothesize how the autograder might have contributed to the significant changes in the data, such as, improved interactions between tutors and students, improved overall course quality, improved learning success, increased time spent, and reduced difficulty.
The autograder technology can be validated as a teaching method to improve student satisfaction with programming courses.
arXiv Detail & Related papers (2021-10-28T14:09:44Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Effects of Human vs. Automatic Feedback on Students' Understanding of AI
Concepts and Programming Style [0.0]
The use of automatic grading tools has become nearly ubiquitous in large undergraduate programming courses.
There is a relative lack of data directly comparing student outcomes when receiving computer-generated feedback and human-written feedback.
This paper addresses this gap by splitting one 90-student class into two feedback groups and analyzing differences in the two cohorts' performance.
arXiv Detail & Related papers (2020-11-20T21:40:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.